4-Hydroxynonenal

Alias: 4 Hydroxynonenal HNE
Cat No.:V40672 Purity: ≥98%
4-Hydroxynonenal, anα,β unsaturated hydroxyalkenal, is a novel and potent inhibitor of acetaldehyde dehydrogenase 2 (ALDH2) widely used as a marker of lipid peroxidation/oxidative/nitrosative stress biomarke.
4-Hydroxynonenal Chemical Structure CAS No.: 75899-68-2
Product category: ALDH
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
25mg
50mg
100mg
Other Sizes

Other Forms of 4-Hydroxynonenal:

  • 4-Hydroxynonenal-d3 (4-HNE-d3)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Purity: ≥98%

Product Description

4-Hydroxynonenal, an α,β unsaturated hydroxyalkenal, is a novel and potent inhibitor of acetaldehyde dehydrogenase 2 (ALDH2) widely used as a marker of lipid peroxidation/oxidative/nitrosative stress biomarke. It is a lipid peroxidation product derived from oxidized ω-6 polyunsaturated fatty acids. It can modulate various signaling pathways via forming covalent adducts with nucleophilic functional groups in proteins, nucleic acids, and membrane lipids. It also plays an important role in cancer via mitochondria.

Biological Activity I Assay Protocols (From Reference)
Targets

ALDH2; Human Endogenous Metabolite

ln Vitro
In addition to being an inhibitor of ALDH2, 4-hydroxynonenal is also a substrate for ALDH2; at low concentrations, the inhibition of ALDH2 by 4-hydroxynonenal is reversible, but becomes irreversible above 10 μM. 4-To control its own synthesis and improve cellular defenses against oxidative stress, 4-hydroxynonenal can trigger antioxidant defense mechanisms[1]. 4-The byproduct of lipid peroxidation, 4-hydroxynonenal, is genotoxic and mutagenic to bacteria, viruses, and mammalian cells. All four DNA bases are reacted with, but to varying degrees of efficiency: G > C > A > T. The most reliable biomarker of 4-Hydroxynonenal's genotoxic effects is 4-Hydroxynonenal-dG, and these adducts are mostly identified in nucleus DNA. The p53 mutation caused by 4-hydroxynonenal-dG is a well-known illustration of the etiological significance of 4-hydroxynonenal-dG in human malignancies. 4-Hydroxynonenal-dG adducts were shown to form preferentially at codon 249's third base in the p53 gene. This resulted in gene mutation and altered a number of biological processes, such as differentiation, apoptosis, cell cycle arrest, and DNA repair[1].
ln Vivo
The expression levels of NADPH oxidase 1 (NOX1), inducible nitric oxide synthase (iNOS), and 4-Hydroxynonenal (4-HNE) are measured in mouse brain tissue 24 hours after fluid percussion injury (FPI). Both wild-type (Nrf2+/+) and Nrf2-deficient (Nrf2-/-) mice exhibit increased expression of 4-Hydroxynonenal following 15 psi injury (moderate injury) in comparison to uninjured Nrf2+/+ and Nrf2-/- mice. Comparing Nrf2-/-KO mice to correspondingly damaged and uninjured Nrf2+/+ WT animals, the expression level of 4-hydroxynonenal is much higher in these animals, in line with the iNOS result[2].
References
[1]. Zhong H, et al. Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: focusing on mitochondria. Redox Biol. 2015;4:193-9.
[2]. Csala M, et al. On the role of 4-hydroxynonenal in health and disease. Biochim Biophys Acta. 2015 May;1852(5):826-38.
[3]. Bhowmick S, et al. Traumatic brain injury-induced downregulation of Nrf2 activates inflammatory response and apoptotic cell death. J Mol Med (Berl). 2019 Nov 22.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C₉H₁₆O₂
Molecular Weight
156.22
CAS #
75899-68-2
Related CAS #
4-Hydroxynonenal-d3;148706-06-3
Appearance
Liquid
SMILES
CCCCCC(O)/C=C/C=O
InChi Key
InChI=1S/C9H16O2/c1-2-3-4-6-9(11)7-5-8-10/h5,7-9,11H,2-4,6H2,1H3/b7-5+
InChi Code
InChI=1S/C9H16O2/c1-2-3-4-6-9(11)7-5-8-10/h5,7-9,11H,2-4,6H2,1H3/b7-5+
Chemical Name
4-hydroxy-2E-nonenal
Synonyms
4 Hydroxynonenal HNE
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~640.12 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (16.00 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (13.31 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (13.31 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 6.4012 mL 32.0061 mL 64.0123 mL
5 mM 1.2802 mL 6.4012 mL 12.8025 mL
10 mM 0.6401 mL 3.2006 mL 6.4012 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top