yingweiwo

Z-WEHD-FMK

Cat No.:V39660 Purity: ≥98%
Z-WEHD-FMK is a novel, highly potent, cell-permeable and irreversible caspase-1/5 inhibitor.
Z-WEHD-FMK
Z-WEHD-FMK Chemical Structure CAS No.: 210345-00-9
Product category: New2
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description

Z-WEHD-FMK is a novel, highly potent, cell-permeable and irreversible caspase-1/5 inhibitor. Z-WEHD-FMK also exhibits a robust inhibitory effect on cathepsin B activity (IC50=6 μM). Z-WEHD-FMK can be used to investigate cells for evidence of apoptosis.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
Nearly entirely blocks C is Z-WEHD-FMK (80 μM; 9 hours). golgin-84 cleavage brought on by trachomatis and raises GM130 expression in cells [1]. Z-WEHD-FMK successfully inhibited 0909I E. 30 minutes before to exposure to E. piscicida. pyroptosis morphology and piscicida-induced cytotoxicity in ZF4 cells. Moreover, it prevents cytotoxicity brought on by the administration of cytosolic LPS [2]. Significantly, Z-WEHD-FMK (20 μM; 18–24 hours after Cr3+, Ni2+, and Co2+) elicited a 76%–86% reduction in IL-1β production, with a similar reduction observed at 200–400 ppm Cr3+ 35%. Inhibitors of caspase-1 caused a reduction of 40% to 45% when Ni2+ concentrations were 48 ppm or higher. Ultimately, the caspase-1 inhibitor reduced the levels of Co2+ to below the detection threshold at 6 ppm, and in bone marrow-derived macrophages (BMDM) at 12 to 24 ppm, the reduction might range from 40% to 48%[3].
Cell Assay
Western Blot Analysis[1]
Cell Types: Chlamydia trachomatis-infected or mock-infected HeLa cells
Tested Concentrations: 80 μM
Incubation Duration: 9 hrs (hours)
Experimental Results: Increased expression of golgin-84 and GM130.

Cell viability assay [2]
Cell Types: Mycoplasma-free ZF4 cells
Tested Concentrations:
Incubation Duration: 30 minutes before exposure to E. piscicida
Experimental Results: Inhibition of cytotoxicity and pyroptosis morphology of ZF4 cells.
References

[1]. Caspase-4 and caspase-5, members of the ICE/CED-3 family of cysteine proteases, are CrmA-inhibitable proteases.Cell Death Differ. 1997 Aug;4(6):473-8.

[2]. Sensing of cytosolic LPS through caspy2 pyrin domain mediates noncanonical inflammasome activation in zebrafish.Nat Commun. 2018 Aug 3;9(1):3052.

[3]. Effects of metal ions on caspase-1 activation and interleukin-1β release in murine bone marrow-derived macrophages.PLoS One. 2018 Aug 23;13(8):e0199936.

[4]. CA-074Me protection against anthrax lethal toxin.Infect Immun. 2009 Oct;77(10):4327-36.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C37H42N7O10F
Molecular Weight
763.76868
Exact Mass
763.298
CAS #
210345-00-9
PubChem CID
25108687
Appearance
Light yellow to yellow solid powder
LogP
4.205
Hydrogen Bond Donor Count
6
Hydrogen Bond Acceptor Count
12
Rotatable Bond Count
23
Heavy Atom Count
55
Complexity
1330
Defined Atom Stereocenter Count
4
SMILES
COC(=O)CC[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)N[C@@H](CC(=O)OC)C(=O)CF)NC(=O)[C@H](CC2=CNC3=CC=CC=C32)NC(=O)OCC4=CC=CC=C4
InChi Key
NLZNSSWGRVBWIX-KRCBVYEFSA-N
InChi Code
InChI=1S/C37H42FN7O10/c1-53-32(47)13-12-27(34(49)44-30(15-24-19-39-21-41-24)36(51)43-28(31(46)17-38)16-33(48)54-2)42-35(50)29(14-23-18-40-26-11-7-6-10-25(23)26)45-37(52)55-20-22-8-4-3-5-9-22/h3-11,18-19,21,27-30,40H,12-17,20H2,1-2H3,(H,39,41)(H,42,50)(H,43,51)(H,44,49)(H,45,52)/t27-,28-,29-,30-/m0/s1
Chemical Name
methyl (4S)-5-[[(2S)-1-[[(3S)-5-fluoro-1-methoxy-1,4-dioxopentan-3-yl]amino]-3-(1H-imidazol-5-yl)-1-oxopropan-2-yl]amino]-4-[[(2S)-3-(1H-indol-3-yl)-2-(phenylmethoxycarbonylamino)propanoyl]amino]-5-oxopentanoate
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~130.93 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (3.27 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (3.27 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (3.27 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.3093 mL 6.5465 mL 13.0929 mL
5 mM 0.2619 mL 1.3093 mL 2.6186 mL
10 mM 0.1309 mL 0.6546 mL 1.3093 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us