yingweiwo

XL228

Alias: XL 228; XL-228; XL228
Cat No.:V28282 Purity: ≥98%
XL228 is a multi-target tyrosine kinase inhibitor (TKI) (antagonist) with IC50s of 5, 3.1, 1.6, 6.1 and 2 nM for Bcr-Abl, Aurora A, IGF-1R, Src and Lyn respectively.
XL228
XL228 Chemical Structure CAS No.: 898280-07-4
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
50mg
100mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
XL228 is a multi-target tyrosine kinase inhibitor (TKI) (antagonist) with IC50s of 5, 3.1, 1.6, 6.1 and 2 nM for Bcr-Abl, Aurora A, IGF-1R, Src and Lyn respectively.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
In viability assays, XL228 exhibits a broad pattern of inhibition with protein inhibitors, such as the tyrosine inhibitors IGF1R, SRC, ABL, FGFR1-3, and ALK as well as the serine/threonine inhibitors Aurora A and Aurora B. Approximately 30% of cell lines with XL228 relationships show XL228 IC50 values <100 nM, including many cell lines with characteristic ALK or FGFR mutations or loss. Aurora A and B are phosphorylated by XL228 at a 10 nM concentration. HeLa cells treated for a brief period of time may experience disruption of the mitotic spindle; most mitotic cells show unipolar spindles and chromosomal disarray [2]. Low nanomolar biological activity is shown by Abl topology (Ki=5 nM) and the T315I version of Abl against imatinib and dasatinib (Ki= 1.4 nM). With an IC50 of 33 and 43 nM, respectively, XL228 suppresses the phosphorylation of BCR-ABL and its substrate STAT5 in K562 cells in vitro [3].
ln Vivo
In K562 xenograft tumors, XL228 has a strong effect on BCR-ABL signaling, according to single-dose pharmacodynamic tests. The phosphorylation of BCR-ABL was reduced by 50% at a dose of 3.5 μM and by 50% at a concentration of 0.8 μM of XL228 Manhattan; phosphorylated STAT5 also showed a comparable reduction [3].
References

[1]. Preliminary Clinical Activity in a Phase I Trial of the BCR-ABL/IGF- 1R/Aurora Kinase Inhibitor XL228 in Patients with Ph++ Leukemias with Either Failure to Multiple TKI Therapies or with T315I Mutation. Blood 2008 112:3232.

[2]. Abstract C192: Characterization of the target profile of XL228, a multi‐targeted protein kinase inhibitor in phase 1 clinical development. Mol Cancer Ther 2009;8(12 Suppl):C192.

[3]. Targeting Drug-Resistant CML and Ph+-ALL with the Spectrum Selective Protein Kinase Inhibitor XL228. Blood 2007 110:474;.

Additional Infomation
XL228 is a novel anticancer compound designed to inhibit the insulin-like growth factor type-1 receptor (IGF1R), Src and Abl tyrosine kinases – targets that play crucial roles in cancer cell proliferation, survival and metastasis.
Tyrosine Kinase Inhibitor XL228 is a synthetic molecule that targets multiple tyrosine kinases with potential antineoplastic activity. Tyrosine kinase inhibitor XL228 binds to and inhibits the activities of multiple tyrosine kinases, such as the insulin-like growth factor 1 receptor (IGF1R), Src tyrosine kinase, and Bcr-Abl tyrosine kinase. Blockade of these kinases may result in the inhibition of tumor angiogenesis, cell proliferation, and metastasis. In addition, this agent may be a potent inhibitor of the T315I mutant form of the Abl protein, which is associated with the resistance of chronic myelogenous leukemia (CML) to other tyrosine kinase inhibitors. IGF1R and Src tyrosine kinases are upregulated in many tumor cells and play important roles in tumor cell proliferation and metastasis. Bcr-Abl translocation leads to constitutive activation of ABL kinase and is commonly associated with Philadelphia-positive acute lymphocytic leukemia (ALL).
Drug Indication
Investigated for use/treatment in leukemia (lymphoid) and leukemia (myeloid).
Mechanism of Action
XL228 potently inhibits the T315I mutant form of ABL, which is resistant to inhibition by other targeted therapies approved for chronic myelogenous leukemia. XL228 also targets IGF1R, which is a receptor tyrosine kinase that is highly expressed and activated in a broad range of human tumors and is thought to promote tumor growth, survival and resistance to chemotherapeutic agents. XL228 showed efficacy in a variety of solid tumor xenograft models.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C22H31N9O
Molecular Weight
437.54
Exact Mass
437.265
CAS #
898280-07-4
PubChem CID
59757974
Appearance
White to off-white solid powder
Density
1.3±0.1 g/cm3
Boiling Point
715.7±70.0 °C at 760 mmHg
Flash Point
386.6±35.7 °C
Vapour Pressure
0.0±2.3 mmHg at 25°C
Index of Refraction
1.669
LogP
1.35
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
9
Rotatable Bond Count
8
Heavy Atom Count
32
Complexity
598
Defined Atom Stereocenter Count
0
InChi Key
ALKJNCZNEOTEMP-UHFFFAOYSA-N
InChi Code
InChI=1S/C22H31N9O/c1-14(2)17-10-16(32-29-17)13-23-22-25-19(24-20-11-18(27-28-20)15-4-5-15)12-21(26-22)31-8-6-30(3)7-9-31/h10-12,14-15H,4-9,13H2,1-3H3,(H3,23,24,25,26,27,28)
Chemical Name
4-N-(5-cyclopropyl-1H-pyrazol-3-yl)-6-(4-methylpiperazin-1-yl)-2-N-[(3-propan-2-yl-1,2-oxazol-5-yl)methyl]pyrimidine-2,4-diamine
Synonyms
XL 228; XL-228; XL228
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ≥ 83.33 mg/mL (~190.45 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (4.75 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (4.75 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (4.75 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.2855 mL 11.4275 mL 22.8551 mL
5 mM 0.4571 mL 2.2855 mL 4.5710 mL
10 mM 0.2286 mL 1.1428 mL 2.2855 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us