Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
ln Vitro |
WEE1-IN-5 in pCDC2 has an EC50 of 188 nM, while CYP3A4/5 has a variable IC50 [1].
|
---|---|
ln Vivo |
In SD rats, WEE1-IN-5 (5 mg/kg orally; 1 mg/kg intravenously; single dose) has a bioavailability of 35%, an AUCint of 1324 h·ng/mL, and a CL of 14 mL/min/kg. ..1].
|
References |
Molecular Formula |
C26H28CL2N6O
|
---|---|
Molecular Weight |
511.4461
|
Exact Mass |
510.17
|
CAS # |
2243882-74-6
|
PubChem CID |
152206257
|
Appearance |
White to off-white solid powder
|
Density |
1.331±0.06 g/cm3(Predicted)
|
Boiling Point |
684.4±65.0 °C(Predicted)
|
LogP |
5.6
|
Hydrogen Bond Donor Count |
1
|
Hydrogen Bond Acceptor Count |
6
|
Rotatable Bond Count |
4
|
Heavy Atom Count |
35
|
Complexity |
727
|
Defined Atom Stereocenter Count |
0
|
InChi Key |
VWHNEYAANMETIA-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C26H28Cl2N6O/c1-16-13-18(7-8-19(16)17-9-11-32(2)12-10-17)30-26-29-14-20-24(31-26)33(3)15-34(25(20)35)23-21(27)5-4-6-22(23)28/h4-8,13-14,17H,9-12,15H2,1-3H3,(H,29,30,31)
|
Chemical Name |
6-(2,6-dichlorophenyl)-8-methyl-2-[3-methyl-4-(1-methylpiperidin-4-yl)anilino]-7H-pyrimido[4,5-d]pyrimidin-5-one
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~20 mg/mL (~39.10 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 1 mg/mL (1.96 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 10.0 mg/mL clear DMSO stock solution to 400 μL of PEG300 and mix evenly; then add 50 μL of Tween-80 to the above solution and mix evenly; then add 450 μL of normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 1 mg/mL (1.96 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 10.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 1 mg/mL (1.96 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.9552 mL | 9.7761 mL | 19.5523 mL | |
5 mM | 0.3910 mL | 1.9552 mL | 3.9105 mL | |
10 mM | 0.1955 mL | 0.9776 mL | 1.9552 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.