Verdiperstat (AZD-3241)

Alias: AZD3241; AZD 3241; AZD-3241
Cat No.:V4275 Purity: ≥98%
Verdiperstat (also known as AZD3241) is a novel, potent, selective, irreversible and orally bioactivemyeloperoxidase/MPO inhibitor (IC50 = 630 nM) with the potential to be used in the treatment of neurodegenerative brain disorders.
Verdiperstat (AZD-3241) Chemical Structure CAS No.: 890655-80-8
Product category: Peroxidases
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Verdiperstat (also known as AZD3241) is a novel, potent, selective, irreversible and orally bioactive myeloperoxidase/MPO inhibitor (IC50 = 630 nM) with the potential to be used in the treatment of neurodegenerative brain disorders. The hypothesized mechanism of action of AZD3241 involves reduction of oxidative stress leading to reduction of sustained neuroinflammation. The purpose of this phase 2a randomized placebo controlled multicentre positron emission tomography study was to examine the effect of 8 weeks treatment with AZD3241 on microglia in patients with Parkinson's disease. Parkinson patients received either AZD3241 600 mg orally twice a day or placebo (in 3:1 ratio) for 8 weeks. The binding of (11)C-PBR28 to the microglia marker 18 kDa translocator protein, was examined using positron emission tomography at baseline, 4 weeks and 8 weeks. The outcome measure was the total distribution volume, estimated with the invasive Logan graphical analysis. The primary statistical analysis examined changes in total distribution volume after treatment with AZD3241 compared to baseline. Assessments of safety and tolerability of AZD3241 included records of adverse events, vital signs, electrocardiogram, and laboratory tests. The patients had a mean age of 62 (standard deviation = 6) years; 21 were male, three female and mean Unified Parkinson's Disease Rating Scale III score (motor examination) ranged between 6 and 29. In the AD3241 treatment group (n = 18) the total distribution volume of (11)C-PBR28 binding to translocator protein was significantly reduced compared to baseline both at 4 and 8 weeks (P < 0.05). The distribution volume reduction across nigrostriatal regions at 8 weeks ranged from 13-16%, with an effect size equal to 0.5-0.6. There was no overall change in total distribution volume in the placebo group (n = 6). AZD3241 was safe and well tolerated. The reduction of (11)C-PBR28 binding to translocator protein in the brain of patients with Parkinson's disease after treatment with AZD3241 supports the hypothesis that inhibition of myeloperoxidase has an effect on microglia. The results of the present study provide support for proof of mechanism of AZD3241 and warrant extended studies on the efficacy of AZD3241 in neurodegenerative disorders.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
Myeloperoxidase (MPO) inhibitor verdiperstat (AZD3241), with an IC50 of 630 nM, is employed in the investigation of neurodegenerative brain illnesses [1]. Myeloperoxidase is specifically and irreversibly inhibited by verdiperstat (AZD3241), which may also play a role in lowering oxidative stress and consequently chronic neuroinflammation [2].
References
[1]. Johnström P, et al. Development of rapid multistep carbon-11 radiosynthesis of the myeloperoxidase inhibitor AZD3241 to assess brain exposure by PET microdosing. Nucl Med Biol. 2015 Jun;42(6):555-60.
[2]. Jucaite A, et al. Effect of the myeloperoxidase inhibitor AZD3241 on microglia: a PET study in Parkinson's disease. Brain. 2015 Sep;138(Pt 9):2687-700.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C11H15N3O2S
Molecular Weight
253.320700883865
CAS #
890655-80-8
SMILES
O=C(N1)C(NC=C2)=C2N(CCOC(C)C)C1=S
InChi Key
FVJCUZCRPIMVLB-UHFFFAOYSA-N
InChi Code
InChI=1S/C11H15N3O2S/c1-7(2)16-6-5-14-8-3-4-12-9(8)10(15)13-11(14)17/h3-4,7,12H,5-6H2,1-2H3,(H,13,15,17)
Chemical Name
1-[2-(propan-2-yloxy)ethyl]-2-sulfanylidene-1,2,3,5-tetrahydro-4H-pyrrolo[3,2-d]pyrimidin-4-one
Synonyms
AZD3241; AZD 3241; AZD-3241
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~125 mg/mL (~493.45 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (9.87 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (9.87 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (9.87 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.9476 mL 19.7379 mL 39.4758 mL
5 mM 0.7895 mL 3.9476 mL 7.8952 mL
10 mM 0.3948 mL 1.9738 mL 3.9476 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top