yingweiwo

Troxerutin

Alias: Helveton; Flebil; Factor P-zyma
Cat No.:V16880 Purity: ≥98%
Troxerutin, known also as vitamin P4, is a trihydroxyethylated analogue of the natural bioflavonoid rutin, which inhibits the production of reactive oxygen species (ROS) and inhibits ER stress-mediated NOD activation.
Troxerutin
Troxerutin Chemical Structure CAS No.: 7085-55-4
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Troxerutin, known also as vitamin P4, is a trihydroxyethylated analogue of the natural bioflavonoid rutin, which inhibits the production of reactive oxygen species (ROS) and inhibits ER stress-mediated NOD activation.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
The outcomes shown that HDP cells experienced the highest level of defense against ROS-induced cell damage following 10 μM troxerutin repair. After being exposed to H2O2, treatment with H2O2 alone decreased cell viability to 77.33±2.44%; however, shaping with 10 μM Troxerutin kept cell viability at 90.88±2.24% (P<0.05). When Troxerutin was used for shaping, the number of cells in the sub-G1 phase decreased, indicating cell death, at concentrations of 5 and 10 μM. 3.58±0.15 and 0.89±0.11% of normal and Troxerutin-treated cells, respectively, were 2'7'-dichlorofluorescein (DCF) positive (P<0.05), but ROS levels rose to 46.36± 2.33%2 in H2O-treated cells. Following treatment with H2O2, the DCF of cells devoid of Troxerutin declined dramatically by 19.92±1.95%, suggesting that Troxerutin inhibited the generation of ROS in HDP cells caused by H2O2 [1].
ln Vivo
Troxerutin treatment of mice on a high-fat diet (HFD) successfully lowers body weight and nutrition-related respiratory parameters. In HFD-treated mice, neck troxerutin can dramatically prevent liver damage, improve insulin signaling and poor stress, and lessen HFD-treated Troxerutin strongly suppresses the nuclear translocation of target genes and NF-κB p65. expression in the heart after an HFD. Troxerutin also prevents the myocardium fed with high-fat diet from being activated by the endoplasmic reticulum (ER) through the oligomerization domain (NOD). Compared to diabetes without treatment, troxerutin addresses oligomeric domains in the diabetes's media and intima. Compared to diabetes aorta histology that was not treated, there was a significant decrease in structural activation and smooth muscle cell effects in diabetic aortic tissue treated with troxerutin. Malonaldehyde (MDA) levels were considerably lower after 4 weeks of Troxerutin administration in diabetic arteries as compared to untreated diabetes (P<0.01) [3].
References

[1]. Analysis of changes in microRNA expression profiles in response to the troxerutin-mediated antioxidant effect in human dermal papilla cells. Mol Med Rep. 2015 Aug;12(2):2650-60.

[2]. Troxerutin Attenuates Enhancement of Hepatic Gluconeogenesis by Inhibiting NOD Activation-Mediated Inflammation in High-Fat Diet-Treated Mice. Int J Mol Sci. 2016 Dec 25;18(1). pii: E31.

[3]. Beneficial effect of troxerutin on diabetes-induced vascular damages in rat aorta: histopathological alterations and antioxidation mechanism. Int J Endocrinol Metab. 2015 Apr 30;13(2):e25969.

Additional Infomation
Troxerutin has been used in trials studying the treatment of Chronic Venous Insufficiency.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C33H42O19
Molecular Weight
742.68
Exact Mass
742.232
CAS #
7085-55-4
PubChem CID
5486699
Appearance
Light yellow to yellow solid powder
Density
1.7±0.1 g/cm3
Boiling Point
1058.4±65.0 °C at 760 mmHg
Melting Point
168 - 176ºC
Flash Point
332.0±27.8 °C
Vapour Pressure
0.0±0.3 mmHg at 25°C
Index of Refraction
1.690
LogP
-0.32
Hydrogen Bond Donor Count
10
Hydrogen Bond Acceptor Count
19
Rotatable Bond Count
15
Heavy Atom Count
52
Complexity
1170
Defined Atom Stereocenter Count
10
SMILES
C[C@H]1[C@@H]([C@H]([C@H]([C@@H](O1)OC[C@@H]2[C@H]([C@@H]([C@H]([C@@H](O2)OC3=C(OC4=CC(=CC(=C4C3=O)O)OCCO)C5=CC(=C(C=C5)OCCO)OCCO)O)O)O)O)O)O
InChi Key
IYVFNTXFRYQLRP-VVSTWUKXSA-N
InChi Code
InChI=1S/C33H42O19/c1-14-23(38)26(41)28(43)32(49-14)48-13-21-24(39)27(42)29(44)33(51-21)52-31-25(40)22-17(37)11-16(45-7-4-34)12-20(22)50-30(31)15-2-3-18(46-8-5-35)19(10-15)47-9-6-36/h2-3,10-12,14,21,23-24,26-29,32-39,41-44H,4-9,13H2,1H3/t14-,21+,23-,24+,26+,27-,28+,29+,32+,33-/m0/s1
Chemical Name
2-[3,4-bis(2-hydroxyethoxy)phenyl]-5-hydroxy-7-(2-hydroxyethoxy)-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxymethyl]oxan-2-yl]oxychromen-4-one
Synonyms
Helveton; Flebil; Factor P-zyma
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~134.65 mM)
H2O : ≥ 50 mg/mL (~67.32 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (3.37 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (3.37 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (3.37 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 24 mg/mL (32.32 mM) in 0.5% CMC-Na/saline water (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.3465 mL 6.7324 mL 13.4647 mL
5 mM 0.2693 mL 1.3465 mL 2.6929 mL
10 mM 0.1346 mL 0.6732 mL 1.3465 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us