yingweiwo

Tris(2,4-di-tert-butylphenyl)phosphate ethanol

Alias: AAN06119; AAN-06119; AAN 06119;
Cat No.:V39014 Purity: ≥98%
Tris(2,4-di-tert-butylphenyl)phosphate is a bioactive compound extracted from Vitex negundo L.
Tris(2,4-di-tert-butylphenyl)phosphate ethanol
Tris(2,4-di-tert-butylphenyl)phosphate ethanol Chemical Structure CAS No.: 95906-11-9
Product category: New2
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
100mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Tris(2,4-di-tert-butylphenyl)phosphate is a bioactive compound extracted from Vitex negundo L. that displays anti~inflammatory activity and inhibits secreted phospholipase A2 (sPLA2) through molecular docking.
Biological Activity I Assay Protocols (From Reference)
Targets
sPLA2/secretory Phospholipase A2
ln Vitro
Novel compounds with significant medicinal properties have gained much interest in therapeutic approaches for treating various inflammatory disorders like arthritis, odema and snake bites and the post-envenom (impregnating with venom) consequences. Inflammation is caused by the increased concentration of secretory Phospholipases A(2) (sPLA(2)s) at the site of envenom. A novel compound Tris(2,4-di-tert-butylphenyl) phosphate (TDTBPP) was isolated from the leaves of Vitex negundo and the crystal structure was reported recently[1].
ln Vivo
In a carrageenan-induced foot edema model, tris(2,4-di-tert-butylphenyl)phosphate (TDTBPP; 50 mg/kg and 70 mg/kg) has strong anti-inflammatory efficacy [1]. Phosphate tris(2,4-di-tert-butylphenyl) (50 mg/kg and 70 mg/kg) has the ability to considerably lower raw claw edema volume [1].
Animal Protocol
The acute anti-inflammatory activity of TDTBPP was assessed by Carrageenan-induced rat paw odema method. TDTBPP reduced the raw paw odema volume significantly at the tested doses of 50 mg/kg and 70 mg/kg body weight. Molecular docking studies were carried out with the X-ray crystal structures of Daboia russelli pulchella's (Vipera russelli, Indian Russell's viper) venom sPLA(2) and Human non-pancreatic secretory PLA(2) (Hnps PLA(2)) as targets to illustrate the antiinflammatory and antidote activities of TDTBPP. Docking results showed hydrogen bond (H-bond) interaction with Lys69 residue lying in the anti-coagulant loop of D. russelli's venom PLA(2), which is essential in the catalytic activity of the enzyme and hydrophobic interactions with the residues at the binding site (His48, Asp49). Docking of TDTBPP with Hnps PLA(2) structure showed coordination with calcium ion directly as well as through the catalytically important water molecule (HOH1260) located at the binding site[1].
References

[1]. Active compound from the leaves of Vitex negundo L. shows anti-inflammatory activity with evidence of inhibition for secretory Phospholipase A(2) through molecular docking. Bioinformation. 2011;7(4):199-206.

Additional Infomation
Tris(2,4-di-tert-butylphenyl) phosphate is an aryl phosphate.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C42H63O4P
Molecular Weight
662.92099404335
Exact Mass
662.446
Elemental Analysis
C, 76.10; H, 9.58; O, 9.65; P, 4.67
CAS #
95906-11-9
PubChem CID
14572930
Appearance
White to off-white solid powder
Melting Point
99-101 °C(lit.)
LogP
13.116
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
4
Rotatable Bond Count
12
Heavy Atom Count
47
Complexity
920
Defined Atom Stereocenter Count
0
SMILES
O=P(OC1C(C(C)(C)C)=CC(C(C)(C)C)=CC=1)(OC1C(C(C)(C)C)=CC(C(C)(C)C)=CC=1)OC1C(C(C)(C)C)=CC(C(C)(C)C)=CC=1
InChi Key
AZSKHRTUXHLAHS-UHFFFAOYSA-N
InChi Code
InChI=1S/C42H63O4P/c1-37(2,3)28-19-22-34(31(25-28)40(10,11)12)44-47(43,45-35-23-20-29(38(4,5)6)26-32(35)41(13,14)15)46-36-24-21-30(39(7,8)9)27-33(36)42(16,17)18/h19-27H,1-18H3
Synonyms
AAN06119; AAN-06119; AAN 06119;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
Ethanol : ~100 mg/mL (~150.85 mM)
Solubility (In Vivo)
Solubility in Formulation 1: 2.5 mg/mL (3.77 mM) in 10% EtOH + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear EtOH stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: 2.5 mg/mL (3.77 mM) in 10% EtOH + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear EtOH stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (3.77 mM) (saturation unknown) in 10% EtOH + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear EtOH stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.5085 mL 7.5424 mL 15.0848 mL
5 mM 0.3017 mL 1.5085 mL 3.0170 mL
10 mM 0.1508 mL 0.7542 mL 1.5085 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us