yingweiwo

Trimethylamine N-oxide

Alias: Trimethylamine Noxide; Trimethylamine N oxide
Cat No.:V38657 Purity: ≥98%
Trimethylamine N-oxide is a gut microbe-dependent metabolite of dietary choline and other trimethylamine-containing nutrients.
Trimethylamine N-oxide
Trimethylamine N-oxide Chemical Structure CAS No.: 1184-78-7
Product category: New2
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
100mg
Other Sizes

Other Forms of Trimethylamine N-oxide:

  • Trimethylamine N-oxide dihydrate
  • Trimethylamine N-oxide-d9 (Trimethylamine N-oxide-d9)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Trimethylamine N-oxide is a gut microbe-dependent metabolite of dietary choline and other trimethylamine-containing nutrients. Trimethylamine N-oxide induces inflammation by activating ROS/NLRP3 inflammasome. Trimethylamine N-oxide also accelerates fibroblast differentiation and induces cardiac fibrosis by activating the TGF-β/smad2 signaling pathway.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
In vitro, fibroblasts treated with trimethylamine N-oxide (TMAO) exhibited increased migration and size as compared to untreated fibroblasts. Trimethylamine N-oxide has the ability to upregulate the expression of collagen I and α-SMA while also increasing the expression of TGF-β receptor I, which in turn promotes the phosphorylation of Smad2. After treating newborn mouse fibroblasts with trimethylamine N-oxide, there is a decrease in the ubiquitination of TGF-βRI. Smurf2 expression is likewise inhibited by trimethylamine N-oxide [2]. Many marine animals have tissues that contain trimethylamine N-oxide, which offers protection from the damaging effects of hydrostatic pressure, high urea, temperature, and salt [3].
ln Vivo
In animal modeling, cardiac fibrosis models can be created using trimethylamine N-oxide. Phenylacetate mustard (ip; 0–20 mg/kg; 15 days) has an ED15 value of 8.0 mg/kg and is consistently 1.8–1.9 times more potent against cancer than CHL [2]. 15% mortality is caused by 15.9 mg/kg of phenylacetic acid mustard (intraperitoneal injection; 0–20 mg/kg; single dosage) [2].
ADME/Pharmacokinetics
Metabolism / Metabolites
Trimethylamine-N-oxide is biosynthesized in the liver from trimethylamine (TMA), which is derived from choline. Flavin monooxygenase 3 (FMO3) has been implicated in the oxidation of TMA since individuals with mutations in FMO3 present with accumulation of TMA levels, causing fish malodor syndrome. TMAO is secreted in the urine and is not metabolized any further.
Toxicity/Toxicokinetics
Toxicity Summary
Uremic toxins such as TMAO are actively transported into the kidneys via organic ion transporters (especially OAT3). Increased levels of uremic toxins can stimulate the production of reactive oxygen species. This seems to be mediated by the direct binding or inhibition by uremic toxins of the enzyme NADPH oxidase (especially NOX4 which is abundant in the kidneys and heart) (5). Reactive oxygen species can induce several different DNA methyltransferases (DNMTs) which are involved in the silencing of a protein known as KLOTHO. KLOTHO has been identified as having important roles in anti-aging, mineral metabolism, and vitamin D metabolism. A number of studies have indicated that KLOTHO mRNA and protein levels are reduced during acute or chronic kidney diseases in response to high local levels of reactive oxygen species (6). TMAO appears to contribute to the development of atherosclerosis in part by promoting cholesterol accumulation within macrophages, perhaps by inducing scavenger receptors such as CD36 and SRA1, both of which are involved in the uptake of modified lipoproteins (A15344).
Toxicity Data
>100 uM in blood is usually indicative of uremia
References

[1]. High-choline Diet Exacerbates Cardiac Dysfunction, Fibrosis, and Inflammation in a Mouse Model of Heart Failure With Preserved Ejection Fraction. J Card Fail. 2020 May 14;S1071-9164(19)31802-0.

[2]. Gut Microbe-Derived Metabolite Trimethylamine N-oxide Accelerates Fibroblast-Myofibroblast Differentiation and Induces Cardiac Fibrosis. J Mol Cell Cardiol. 2019 Sep;134:119-130.

[3]. Trimethylamine N-Oxide: The Good, the Bad and the Unknown. Toxins (Basel). 2016 Nov 8;8(11):326.

Additional Infomation
Trimethylamine N-oxide is a tertiary amine oxide resulting from the oxidation of the amino group of trimethylamine. It has a role as an osmolyte, a metabolite and an Escherichia coli metabolite. It is functionally related to a trimethylamine. It is a conjugate base of a hydroxytrimethylaminium.
Trimethylamine N-Oxide is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Trimethylamine oxide has been reported in Vitis vinifera, Euglena gracilis, and other organisms with data available.
TMAO is a uremic toxin, an osmolyte and an atherotoxin (causing atherosclerotic plaques). Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. Trimethylamine N-oxide (TMAO) is an oxidation product of trimethylamine and a common metabolite in animals and humans. In particular, trimethylamine-N-oxide is biosynthesized endogenously from trimethylamine, which is derived from choline, which can be derived from dietary lecithin (phosphatidylcholines) or dietary carnitine. TMAO decomposes to trimethylamine (TMA), which is the main odorant that is characteristic of degrading seafood. TMAO is an osmolyte that the body will use to counteract the effects of increased concentrations of urea (due to kidney failure) and high levels can be used as a biomarker for kidney problems. Fish odor syndrome or trimethylaminuria is a defect in the production of the enzyme flavin containing monooxygenase 3 (FMO3) causing incomplete breakdown of trimethylamine from choline-containing food into trimethylamine oxide. Trimethylamine then builds up and is released in the person's sweat, urine, and breath, giving off a strong fishy odor. The concentration of TMAO in the blood increases after consuming foods containing carnitine or lecithin (phosphatidylcholines), if the bacteria that convert those substances to TMAO are present in the gut. High concentrations of carnitine are found in red meat, some energy drinks, and certain dietary supplements; lecithin is found in eggs and is commonly used as an ingredient in processed food. High levels of TMAO are found in many seafoods. Some types of normal gut bacteria (e.g. species of Acinetobacter) in the human gut convert dietary carnitine and dietary lecithin to TMAO. TMAO alters cholesterol metabolism in the intestines, in the liver and in arterial wall. When TMAO is present, cholesterol metabolism is altered and there is an increased deposition of cholesterol within, and decreased removal of cholesterol from, peripheral cells such as those in the artery wall (1, 2, 3).
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C₃H₉NO
Molecular Weight
75.11
Exact Mass
75.068
CAS #
1184-78-7
Related CAS #
Trimethylamine N-oxide dihydrate;62637-93-8;Trimethylamine N-oxide-d9;1161070-49-0;Trimethylamine-N-oxide-13C3
PubChem CID
1145
Appearance
White to off-white solid powder
Density
0.9301 (rough estimate)
Boiling Point
133.8°C (rough estimate)
Melting Point
220-222ºC(lit.)
Index of Refraction
1.4698 (estimate)
LogP
-2.57
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
1
Rotatable Bond Count
0
Heavy Atom Count
5
Complexity
28.4
Defined Atom Stereocenter Count
0
InChi Key
UYPYRKYUKCHHIB-UHFFFAOYSA-N
InChi Code
InChI=1S/C3H9NO/c1-4(2,3)5/h1-3H3
Chemical Name
N,N-dimethylmethanamine oxide
Synonyms
Trimethylamine Noxide; Trimethylamine N oxide
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O : ~100 mg/mL (~1331.38 mM)
DMSO : ~100 mg/mL (~1331.38 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (33.28 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (33.28 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (33.28 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 100 mg/mL (1331.38 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 13.3138 mL 66.5690 mL 133.1381 mL
5 mM 2.6628 mL 13.3138 mL 26.6276 mL
10 mM 1.3314 mL 6.6569 mL 13.3138 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us