yingweiwo

Tomatine

Alias: NSC 234440; Lycopersicin; Tomatine
Cat No.:V15924 Purity: ≥98%
Tomatine is a glycoalkaloid found in the tomato plant (Lycopersicon esculentum Mill.
Tomatine
Tomatine Chemical Structure CAS No.: 17406-45-0
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
100mg
250mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Tomatine is a glycoalkaloid found in the tomato plant (Lycopersicon esculentum Mill.). Tomatine induces neurotoxicity in a RIP1 kinase- and caspase-independent manner. Tomatine promotes the upregulation of nuclear apoptosis-inducing factor (AIF) in neuroblastoma cells. Tomatine also inhibits 20S proteasome activity.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
The neuroblastoma cell line (SH-SY5Y), non-small lung cancer cell line (A549), and tomatine suspension cell line (AGS) had IC50 values of 2 μM, 1.6 μM, and 1.1 μM, respectively [1].
Toxicity/Toxicokinetics
Interactions
TOMATINE REDUCED THE GROWTH ENHANCED BY 10-4 MOLAR INDOLE-3-ACETIC ACID.
References

[1]. Neurotoxicity of the steroidal alkaloids tomatine and tomatidine is RIP1 kinase- and caspase-independent and involves the eIF2α branch of the endoplasmic reticulum. J Steroid Biochem Mol Biol. 2017 Jul;171:178-186.

Additional Infomation
Tomatine is a steroid alkaloid that is tomatidine in which the hydroxy group at position 3 is linked to lycotetraose, a tetrasaccharide composed of two units of D-glucose, one unit of D-xylose, and one unit of D-galactose. It has a role as an immunological adjuvant, a phytotoxin and an antifungal agent. It is a steroid alkaloid, a tetrasaccharide derivative, an alkaloid antibiotic, a glycoside and a glycoalkaloid. It is functionally related to a tomatidine.
Lycopersicin has been reported in Solanum tuberosum, Solanum, and other organisms with data available.
An alkaloid that occurs in the extract of leaves of wild tomato plants. It has been found to inhibit the growth of various fungi and bacteria. It is used as a precipitating agent for steroids. (From The Merck Index, 11th ed)
Mechanism of Action
SIX GLYCOALKALOIDS AND ONE AGLYCONE WERE TESTED FOR CARDIOTONIC ACTIVITIES AND COMPARED WITH K-STROPHANTHOSIDE BY USE OF THE ISOLATED FROG HEART. THE DECREASING ORDER OF POTENCY WAS AS FOLLOWS: K-STROPHANTHOSIDE GREATER THAN TOMATINE GREATER THAN ALPHA-CHACONINE EQUAL TO ALPHA-SOLANINE GREATER THAN DEMISSINE EQUAL TO COMMERSONINE GREATER THAN BETA-CHACONINE GREATER THAN SOLANIDINE. CARDIOTONIC ACTIVITY WAS DIRECTLY RELATED TO THE NUMBER OF SUGARS IN THE MOLECULE IN WHICH THE GLYCOALKALOIDS HAD A COMMON AGLYCONE.
REMOVAL OF 1 OR MORE SUGAR RESIDUES FROM THE ALPHA-TOMATINE MOLECULE MARKEDLY DECREASED ITS FUNGITOXICITY. ALTHOUGH THE PARTIAL HYDROLYSIS OF ALPHA-TOMATINE DID NOT GREATLY AFFECT ITS SURFACTANT PROPERTIES, IT DID DESTROY THE ABILITY OF THE ALKALOID TO FORM A COMPLEX WITH CHOLESTEROL.
Therapeutic Uses
Antifungal Agents; Anti-Infective Agents; Indicators and Reagents
EXPTL USE: TOMATINE GIVEN TO INTACT RATS AT 1-10 MG/KG IM OR 15-30 MG/KG ORALLY PRODUCED A DOSE-DEPENDENT INHIBITION OF CARRAGEENAN-INDUCED PAW EDEMA. THE EFFECT OF THE IM 10 MG/KG DOSE LASTED 24 HOURS. TOMATINE AT 5-10 MG/KG GIVEN DAILY TO INTACT RATS FOR 7 DAYS PRODUCED A DOSE-DEPENDENT INHIBITION OF GRANULATION TISSUE FORMATION INDUCED BY SC IMPLANTATION OF CARRAGEENAN-IMPREGNATED COTTON PELLETS.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C50H83NO21
Molecular Weight
1034.2
Exact Mass
1033.545
CAS #
17406-45-0
PubChem CID
28523
Appearance
White to off-white solid powder
Density
1.5±0.1 g/cm3
Melting Point
300-305ºC
Index of Refraction
1.638
LogP
2.22
Hydrogen Bond Donor Count
13
Hydrogen Bond Acceptor Count
22
Rotatable Bond Count
11
Heavy Atom Count
72
Complexity
1840
Defined Atom Stereocenter Count
31
SMILES
C[C@H]1CC[C@]2([C@H]([C@H]3[C@@H](O2)C[C@@H]4[C@@]3(CC[C@H]5[C@H]4CC[C@@H]6[C@@]5(CC[C@@H](C6)O[C@H]7[C@@H]([C@H]([C@H]([C@H](O7)CO)O[C@H]8[C@@H]([C@H]([C@@H]([C@H](O8)CO)O)O[C@H]9[C@@H]([C@H]([C@@H](CO9)O)O)O)O[C@H]2[C@@H]([C@H]([C@@H]([C@H](O2)CO)O)O)O)O)O)C)C)C)NC1
InChi Key
REJLGAUYTKNVJM-SGXCCWNXSA-N
InChi Code
InChI=1S/C50H83NO21/c1-20-7-12-50(51-15-20)21(2)32-28(72-50)14-26-24-6-5-22-13-23(8-10-48(22,3)25(24)9-11-49(26,32)4)65-45-40(63)37(60)41(31(18-54)68-45)69-47-43(71-46-39(62)36(59)34(57)29(16-52)66-46)42(35(58)30(17-53)67-47)70-44-38(61)33(56)27(55)19-64-44/h20-47,51-63H,5-19H2,1-4H3/t20-,21-,22-,23-,24+,25-,26-,27+,28-,29+,30+,31+,32-,33-,34+,35+,36-,37+,38+,39+,40+,41-,42-,43+,44-,45+,46-,47-,48-,49-,50-/m0/s1
Chemical Name
(2S,3R,4S,5S,6R)-2-[(2S,3R,4S,5R,6R)-2-[(2R,3R,4R,5R,6R)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(1R,2S,4S,5'S,6S,7S,8R,9S,12S,13S,16S,18S)-5',7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icosane-6,2'-piperidine]-16-yl]oxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)-4-[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol
Synonyms
NSC 234440; Lycopersicin; Tomatine
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~96.69 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (2.01 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (2.01 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (2.01 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.9669 mL 4.8347 mL 9.6693 mL
5 mM 0.1934 mL 0.9669 mL 1.9339 mL
10 mM 0.0967 mL 0.4835 mL 0.9669 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us