yingweiwo

Tofacitinib metabolite-1

Alias: Tofacitinib metabolite1 Tofacitinib metabolite 1
Cat No.:V38663 Purity: ≥98%
Tofacitinib metabolite-1 is a metabolite of Tofacitinib, which is a JAK inhibitor andan FDA approved drug for the treatment of rheumatoid arthritis (RA), psoriatic arthritis, and ulcerative colitis.
Tofacitinib metabolite-1
Tofacitinib metabolite-1 Chemical Structure CAS No.: 1640971-51-2
Product category: New2
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description

Tofacitinib metabolite-1 is a metabolite of Tofacitinib, which is a JAK inhibitor and an FDA approved drug for the treatment of rheumatoid arthritis (RA), psoriatic arthritis, and ulcerative colitis.

Biological Activity I Assay Protocols (From Reference)
Targets
JAK; metabolite of Tofacitinib
ln Vivo
Tofacitinib is a novel, oral Janus kinase inhibitor. The objectives of this study were to summarize the pharmacokinetics and metabolism of tofacitinib in humans, including clearance mechanisms. Following administration of a single 50-mg (14)C-labeled tofacitinib dose to healthy male subjects, the mean (standard deviation) total percentage of administered radioactive dose recovered was 93.9% (±3.6), with 80.1% (±3.6) in the urine (28.8% parent), and 13.8% (±1.9) in feces (0.9% parent). Tofacitinib was rapidly absorbed, with plasma concentrations and total radioactivity peaking at around 1 hour after oral administration. The mean terminal phase half-life was approximately 3.2 hours for both parent drug and total radioactivity. Most (69.4%) circulating radioactivity in plasma was parent drug, with all metabolites representing less than 10% each of total circulating radioactivity. Hepatic clearance made up around 70% of total clearance, while renal clearance made up the remaining 30%. The predominant metabolic pathways of tofacitinib included oxidation of the pyrrolopyrimidine and piperidine rings, oxidation of the piperidine ring side-chain, N-demethylation and glucuronidation. Cytochrome P450 (P450) profiling indicated that tofacitinib was mainly metabolized by CYP3A4, with a smaller contribution from CYP2C19. This pharmacokinetic characterization of tofacitinib has been consistent with its clinical experience in drug-drug interaction studies[1].
Enzyme Assay
The Janus kinases (JAKs) are a family of cytosolic tyrosine kinases crucially involved in cytokine signaling. JAKs have been demonstrated to be valid targets in the treatment of inflammatory and myeloproliferative disorders, and two inhibitors, tofacitinib and ruxolitinib, recently received their marketing authorization. Despite this success, selectivity within the JAK family remains a major issue. Both approved compounds share a common 7H-pyrrolo[2,3-d]pyrimidine hinge binding motif, and little is known about modifications tolerated at this heterocyclic core. In the current study, a library of tofacitinib bioisosteres was prepared and tested against JAK3. The compounds possessed the tofacitinib piperidinyl side chain, whereas the hinge binding motif was replaced by a variety of heterocycles mimicking its pharmacophore. In view of the promising expectations obtained from molecular modeling, most of the compounds proved to be poorly active. However, strategies for restoring activity within this series of novel chemotypes were discovered and crucial structure-activity relationships were deduced. The compounds presented may serve as starting point for developing novel JAK inhibitors and as a valuable training set for in silico models[2].
References

[1]. The Pharmacokinetics, Metabolism, and Clearance Mechanisms of Tofacitinib, a Janus Kinase Inhibitor, in Humans. Drug Metab Dispos. 2014 Apr;42(4):759-73.

[2]. Novel Hinge-Binding Motifs for Janus Kinase 3 Inhibitors: A Comprehensive Structure-Activity Relationship Study on Tofacitinib Bioisosteres. ChemMedChem. 2014 Nov;9(11):2516-27.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C16H20N6O2
Molecular Weight
328.37
Exact Mass
328.164
CAS #
1640971-51-2
PubChem CID
67965296
Appearance
Light yellow to yellow solid powder
LogP
0.2
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
3
Heavy Atom Count
24
Complexity
558
Defined Atom Stereocenter Count
2
SMILES
N(C)(C1=C2C(NC(C2)=O)=NC=N1)[C@H]1CN(C(CC#N)=O)CC[C@H]1C
InChi Key
FIQMDRYZOUHVEZ-PWSUYJOCSA-N
InChi Code
InChI=1S/C16H20N6O2/c1-10-4-6-22(14(24)3-5-17)8-12(10)21(2)16-11-7-13(23)20-15(11)18-9-19-16/h9-10,12H,3-4,6-8H2,1-2H3,(H,18,19,20,23)/t10-,12+/m1/s1
Chemical Name
3-[(3R,4R)-4-methyl-3-[methyl-(6-oxo-5,7-dihydropyrrolo[2,3-d]pyrimidin-4-yl)amino]piperidin-1-yl]-3-oxopropanenitrile
Synonyms
Tofacitinib metabolite1 Tofacitinib metabolite 1
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: This product requires protection from light (avoid light exposure) during transportation and storage.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~304.53 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (7.61 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (7.61 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

View More

Solubility in Formulation 3: 2.5 mg/mL (7.61 mM) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.0453 mL 15.2267 mL 30.4535 mL
5 mM 0.6091 mL 3.0453 mL 6.0907 mL
10 mM 0.3045 mL 1.5227 mL 3.0453 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us