yingweiwo

Tocainide hydrochloride

Alias: Alanyl-2,6-xylidide Astra W 36095 W36095 W 36095W-36095Tocainide hydrochloride
Cat No.:V9918 Purity: ≥98%
Tocainide HCl is a sodium channel blocker that blocks sodium channels in pain-producing lesions (on the neural membrane).
Tocainide hydrochloride
Tocainide hydrochloride Chemical Structure CAS No.: 71395-14-7
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
50mg
Other Sizes

Other Forms of Tocainide hydrochloride:

  • Tocainide
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Tocainide HCl is a sodium channel blocker that blocks sodium channels in pain-producing lesions (on the neural membrane). Tocainide HCl is a primary amine analog of lignocaine utilized in study/research of cardiac arrhythmias.
Biological Activity I Assay Protocols (From Reference)
ln Vivo
In dogs with coronary artery blockage who are not under anesthesia, tocainide (100 mg/kg) significantly decreases ventricular ectopic activity. Ventricular ectopic activity recovered quickly after the tocainide infusion was stopped in models of coronary occlusion and digitalis toxicity [1].
References

[1]. Chemistry, pharmacology, antiarrhythmic efficacy and adverse effects of tocainide hydrochloride, an orally active structural analog of lidocaine. Pharmacotherapy. 1983 Nov-Dec;3(6):316-23.

[2]. Optimal requirements for high affinity and use-dependent block of skeletal muscle sodium channel by N-benzyl analogs of tocainide-like compounds.Mol Pharmacol. 2003 Oct;64(4):932-45.

Additional Infomation
Tocainide Hydrochloride is the hydrochloride salt form of tocainide, a primary amine analog of lidocaine exhibiting class 1b antiarrhythmic property. Tocainide hydrochloride stabilizes the neuronal membrane by reversibly binding to and blocking open and inactivated voltage-gated sodium channels. This inhibits the inward sodium current required for the initiation and conduction of impulses and reduces the excitability of myocardial cells. This agent reduces the rate of rise and amplitude, and shortens the action-potential duration (APD) in both the Purkinje and muscle fibers. Tocainide also shortens the effective refractory period (ERP) of Purkinje fibers resulting in an increased the ERP/APD ratio. Overall these effects lead to the slowing of nerve impulses and stabilization of the heartbeat.
An antiarrhythmic agent which exerts a potential- and frequency-dependent block of SODIUM CHANNELS.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C11H17CLN2O
Molecular Weight
228.72
Exact Mass
192.126
CAS #
71395-14-7
Related CAS #
Tocainide;41708-72-9
PubChem CID
108173
Appearance
Off-white to gray solid powder
LogP
2.362
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
2
Rotatable Bond Count
2
Heavy Atom Count
15
Complexity
196
Defined Atom Stereocenter Count
0
InChi Key
AMZACPWEJDQXGW-UHFFFAOYSA-N
InChi Code
InChI=1S/C11H16N2O.ClH/c1-7-5-4-6-8(2)10(7)13-11(14)9(3)12;/h4-6,9H,12H2,1-3H3,(H,13,14);1H
Chemical Name
(1)-2-Amino-N-(2,6-dimethylphenyl)propionamide hydrochloride
Synonyms
Alanyl-2,6-xylidide Astra W 36095 W36095 W 36095W-36095Tocainide hydrochloride
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~125 mg/mL (~546.52 mM)
H2O : ~50 mg/mL (~218.61 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (9.09 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (9.09 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (9.09 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.3722 mL 21.8608 mL 43.7216 mL
5 mM 0.8744 mL 4.3722 mL 8.7443 mL
10 mM 0.4372 mL 2.1861 mL 4.3722 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us