TGR5 Receptor Agonist

Alias: MDK-00245; MDK00245; MDK 00245; TGR5 Receptor Agonist
Cat No.:V2862 Purity: ≥98%
TGR5 Receptor Agonist is a novel, potent andsynthetic small molecule agonist of TGR5 (G-protein coupled receptor19, GPCR19), it showed improved potency in the U2-OS cell assay with pEC50 of 6.8 and in melanophore cells with pEC50 of 7.5.
TGR5 Receptor Agonist Chemical Structure CAS No.: 1197300-24-5
Product category: G protein-coupled Bile Acid Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

TGR5 Receptor Agonist is a novel, potent and synthetic small molecule agonist of TGR5 (G-protein coupled receptor19, GPCR19), it showed improved potency in the U2-OS cell assay with pEC50 of 6.8 and in melanophore cells with pEC50 of 7.5. TGR5 Receptor Agonist is a novel, potent small molecule agonist of the human TGR5 G-protein coupled receptor. It is described as a 3-aryl-4-isoxazolecarboxamide analog found through a high-throughput screening campaign. TGR5 Receptor Agonist demonstrated improved GLP-1 secretion in vivo via an intracolonic dose coadministered with glucose challenge in a canine model. Treatments for metabolic diseases like type II diabetes and its aftereffects may benefit from targeting G-protein coupled receptors.

Biological Activity I Assay Protocols (From Reference)
Targets
GPCR19 ( EC50 = 7.5 ); GPCR19 ( pEC50 = 6.8 )
ln Vitro

In vitro activity: TGR5 Receptor Agonist is a newly developed, synthetic, and highly potent small molecule agonist of TGR5 (also known as GPCR19). It demonstrated enhanced potency in the U2-OS cell assay, exhibiting a pEC50 of 6.8, and in melanophore cells, demonstrating a pEC50 of 7.5. The 3-aryl-4-isoxazolecarboxamide analog known as TGR5 Receptor Agonist is described. It was discovered through a high-throughput screening campaign to be a novel and potent small molecule agonist of the human TGR5 G-protein coupled receptor. TGR5 Receptor Agonist demonstrated improved GLP-1 secretion in vivo via an intracolonic dose coadministered with glucose challenge in a canine model. For the treatment of metabolic diseases like type II diabetes and the complications that go along with it, G-protein coupled receptors may prove beneficial.

ln Vivo
TGR5 Receptor Agonist (CCDC) directly activates a subset of bladder-innervating dorsal root ganglia (DRG) neurons as well as a tiny proportion of non-neuronal cells in Trpv1-/- mice[2].
TGR5 Receptor Agonist (CCDC) (2?or 5 μg; ICV) decreases food intake and body weight in diet-induced obese mice[3].
Enzyme Assay
TGR5 Receptor Agonist was tested in over 100 internal and external 7TM, ion channel, enzyme, transporter, and nuclear hormone receptor selectivity assays, including FXR, another bile acid receptor. It only demonstrated a statistically significant response in the pro-inflammatory cytokine TNFalpha secretion (pIC50 = 6.8) in human primary monocytes after stimulation with lipopolysaccharide (LPS). TGR5 Receptor Agonist additionally exhibits favorable physicochemical characteristics and exhibits no detectable activity against hERG dofetilide binding (pIC50<4.3) or any of the three common cytochrome P450 (CYP450) isoforms, 1A2, 2C9, and 2D6.
Cell Assay
TGR5 Receptor Agonist demonstrated enhanced potency in melanophore cells (pEC50 of 7.5) and the U2-OS cell assay (pEC50 of 6.8).
Animal Protocol
Female C57BL/6J mice [12-18 weeks; TRPV1 knockout (trpv1-/-), TRPA1 knockout (trpa1-/-), or TGR5 knockout (Gpbar1-/-)]
100 µM, 100 µL Infused gently, to fill but not fully distend the bladder, and allowed to incubate for 5 min
References

[1]. Discovery of 3-aryl-4-isoxazolecarboxamides as TGR5 receptor agonists. J Med Chem. 2009 Dec 24;52(24):7962-5.

[2]. TGR5 agonists induce peripheral and central hypersensitivity to bladder distension. Sci Rep. 2022 Jun 15;12(1):9920.

[3]. Hypothalamic bile acid-TGR5 signaling protects from obesity. Cell Metab. 2021 Jul 6;33(7):1483-1492.e10.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C18H14CL2N2O2
Molecular Weight
361.22
Exact Mass
360.04
Elemental Analysis
C, 59.85; H, 3.91; Cl, 19.63; N, 7.76; O, 8.86
CAS #
1197300-24-5
Related CAS #
1197300-24-5
Appearance
Solid powder
SMILES
CC1=C(C(=NO1)C2=CC=CC=C2Cl)C(=O)N(C)C3=CC=C(C=C3)Cl
InChi Key
IGRCWJPBLWGNPX-UHFFFAOYSA-N
InChi Code
InChI=1S/C18H14Cl2N2O2/c1-11-16(17(21-24-11)14-5-3-4-6-15(14)20)18(23)22(2)13-9-7-12(19)8-10-13/h3-10H,1-2H3
Chemical Name
3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethyl-1,2-oxazole-4-carboxamide
Synonyms
MDK-00245; MDK00245; MDK 00245; TGR5 Receptor Agonist
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ≥ 48 mg/mL
Water: <1 mg/mL
Ethanol: <1 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 10 mg/mL (27.68 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 100.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 10 mg/mL (27.68 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 100.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.7684 mL 13.8420 mL 27.6840 mL
5 mM 0.5537 mL 2.7684 mL 5.5368 mL
10 mM 0.2768 mL 1.3842 mL 2.7684 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Relative mRNA expression in bladder tissue, lumbosacral DRG and isolated bladder-innervating DRG neurons. (A) qRT-PCR was used to determine the relative abundance of the TGR5 gene Gpbar1 in urothelial cells, mucosal urothelium, and detrusor smooth muscle of the bladder of wild-type and Gpbar1−/− mice. Sci Rep . 2022 Jun 15;12(1):9920.
  • In vitro activation of TGR5 in primary DRG neurons results in increased intracellular Ca2+. Sci Rep . 2022 Jun 15;12(1):9920.
Contact Us Back to top