yingweiwo

Tezacitabine

Alias: KW 2331; FMdC; MDL 101731
Cat No.:V16197 Purity: ≥98%
Tezacitabine is a cytostatic and cytotoxic antimetabolite and a nucleoside analog.
Tezacitabine
Tezacitabine Chemical Structure CAS No.: 130306-02-4
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Tezacitabine is a cytostatic and cytotoxic antimetabolite and a nucleoside analog. Tezacitabine irreversibly inhibits ribonucleotide reductase and interferes with DNA replication and repair. Tezacitabine effectively causes apoptosis and may be utilized in study/research of leukemia and solid tumors.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
In the G1 and S phases of the cell cycle lag, tizacitabine (0.01-10 µM; 24 hours; CCRF-SB, KG-1, Jurkat, COLO-205, MCF-7, and PC-3 cells) promotes leakage resistance[1]. Tezacitabine (0.01-10 µM; 24 hours; CCRF-SB, KG-1, Jurkat, COLO-205, MCF-7, and PC-3 cells) acts concentration-dependently on apoptotic modes by inhibiting the caspase 3/7 pathway [1]. Tizacitabine possesses potent cytotoxic and cytostatic effects. Tezacitabine's cytotoxic effects include modifications in protein metabolism in addition to apoptosis [1].
ln Vivo
In HCT 116 tumor xenografts, tizacitabine treatment (100 mg/kg; i.p.; daily; female nude mice) suppresses tumor growth [2].
Cell Assay
Cell cycle analysis[1]
Cell Types: CCRF-SB, KG-1, Jurkat, COLO-205, MCF-7 and PC-3 Cell
Tested Concentrations: 0.01 µM, 0.1 µM, 1.0 µM and 10 µM
Incubation Duration: 24 hrs (hours)
Experimental Results: Induces leakage block in G1 (concentrations above 10 nM) and S phase (low concentrations) of the cell cycle.

Apoptosis analysis[1]
Cell Types: CCRF-SB, KG-1, Jurkat, COLO-205, MCF-7 and PC-3 Cell
Tested Concentrations: 0.01 µM, 0.1 µM, 1.0 µM and 10 µM
Incubation Duration: 24 hrs (hours)
Experimental Results: Apoptosis was induced through the caspase 3/7 pathway in a concentration-dependent manner.
Animal Protocol
Animal/Disease Models: Female nude mice (7-9 weeks old) injected with HCT 116 cells [2]
Doses: 100 mg/kg
Route of Administration: intraperitoneal (ip) injection; daily; 14 days
Experimental Results: Inhibition of tumors in HCT 116 tumor xenografts grow.
References

[1]. Tezacitabine Blocks Tumor Cells in G1 and S Phases of the Cell Cycle and Induces Apoptotic Cell Death. Acta Pol Pharm. May-Jun 2005;62(3):195-205.

[2]. Tezacitabine Enhances the DNA-directed Effects of Fluoropyrimidines in Human Colon Cancer Cells and Tumor Xenografts. Biochem Pharmacol. 2007 Jan 1;73(1):44-55.

Additional Infomation
Tezacitabine is a hydroxypyrimidine.
A synthetic purine nucleoside analogue with potential antineoplastic activity.
Tezacitabine is a synthetic pyrimidine nucleoside analogue with potential antineoplastic activity. Phosphorylated by cellular kinases, tezacitabine is converted into its active diphosphate and triphosphate metabolites. Tezacitabine diphosphate binds to and irreversibly inhibits the activity of the enzyme ribonucleotide reductase (RNR), which may result in the inhibition of DNA synthesis in tumor cells and tumor cell apoptosis. Tezacitabine triphosphate acts as a substrate for DNA polymerase, further compromising DNA replication. This agent is relatively resistant to metabolic deactivation by cytidine deaminase. RNR catalyzes the conversion of ribonucleoside 5'-diphosphates to deoxyribonucleoside 5'-diphosphates necessary for DNA synthesis and is overexpressed in many tumor types.
Tezacitabine Anhydrous is the anhydrous form of tezacitabine, a synthetic pyrimidine nucleoside analogue with potential antineoplastic activity. Phosphorylated by cellular kinases, tezacitabine is converted into its active diphosphate and triphosphate metabolites. Tezacitabine diphosphate binds to and irreversibly inhibits the activity of the enzyme ribonucleotide reductase (RNR), which may result in the inhibition of DNA synthesis in tumor cells and eventually tumor cell apoptosis. Tezacitabine triphosphate acts as a substrate for DNA polymerase, thereby further inhibiting DNA replication. RNR catalyzes the conversion of ribonucleoside 5'-diphosphates to deoxyribonucleoside 5'-diphosphates, a necessary step for DNA synthesis, and is overexpressed in many tumor cell types.
Drug Indication
Investigated for use/treatment in colorectal cancer, lung cancer, leukemia (unspecified), and gastric cancer.
Mechanism of Action
Phosphorylated by cellular kinases, tezacitabine is converted into its active diphosphate and triphosphate metabolites. Tezacitabine diphosphate binds to and irreversibly inhibits the activity of the enzyme ribonucleotide reductase (RNR), which may result in the inhibition of DNA synthesis in tumor cells and tumor cell apoptosis. Tezacitabine triphosphate acts as a substrate for DNA polymerase, further compromising DNA replication. This agent is relatively resistant to metabolic deactivation by cytidine deaminase. RNR catalyzes the conversion of ribonucleoside 5'-diphosphates to deoxyribonucleoside 5'-diphosphates necessary for DNA synthesis and is overexpressed in many tumor types.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C10H11FN2O4
Molecular Weight
242.2
Exact Mass
275.091
CAS #
130306-02-4
PubChem CID
6435808
Appearance
Off-white to light yellow solid powder
Boiling Point
590.1ºC at 760 mmHg
Flash Point
310.7ºC
LogP
-2.3
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
5
Rotatable Bond Count
2
Heavy Atom Count
18
Complexity
448
Defined Atom Stereocenter Count
3
SMILES
C1=CN(C(=O)N=C1N)[C@H]2/C(=C/F)/[C@@H]([C@H](O2)CO)O
InChi Key
GFFXZLZWLOBBLO-ASKVSEFXSA-N
InChi Code
InChI=1S/C10H12FN3O4/c11-3-5-8(16)6(4-15)18-9(5)14-2-1-7(12)13-10(14)17/h1-3,6,8-9,15-16H,4H2,(H2,12,13,17)/b5-3+/t6-,8+,9-/m1/s1
Chemical Name
4-amino-1-[(2R,3E,4S,5R)-3-(fluoromethylidene)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidin-2-one
Synonyms
KW 2331; FMdC; MDL 101731
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O : ~200 mg/mL (~777.54 mM)
DMSO : ~200 mg/mL (~777.54 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 5 mg/mL (19.44 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 50.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 5 mg/mL (19.44 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 50.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 5 mg/mL (19.44 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 50.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 100 mg/mL (388.77 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.1288 mL 20.6441 mL 41.2882 mL
5 mM 0.8258 mL 4.1288 mL 8.2576 mL
10 mM 0.4129 mL 2.0644 mL 4.1288 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us