yingweiwo

Terbutryn

Cat No.:V11840 Purity: ≥98%
Terbutryn (Igran; Clarosan; Prebane) is a traizine-based herbicide and pesticide that can be absorbed by the roots and foliage and acts as an inhibitor of photosynthesis.
Terbutryn
Terbutryn Chemical Structure CAS No.: 886-50-0
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
250mg
500mg
Other Sizes

Other Forms of Terbutryn:

  • Terbutryn-d5 (terbutryn-d5; terbutryn-d5)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Terbutryn (Igran; Clarosan; Prebane) is a traizine-based herbicide and pesticide that can be absorbed by the roots and foliage and acts as an inhibitor of photosynthesis.

Biological Activity I Assay Protocols (From Reference)
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
They are efficiently absorbed from intestine, and presumably there is some absorption across the skin and lung. /Urea-, uracil- and triazine-based herbicides/
Absorbed through both foliage and roots. It appears to penetrate foliage rapidly, minimizing removal from foliage by rain. /It is/ translocated acropetally through xylem from roots and foliage, accumulating in apical meristems.
In mammals, following oral admin, 73-85% is eliminated in metabolized form in feces within 24 hr.
Metabolism / Metabolites
Terbutryn ... was metabolized by both rats and goats after a single oral dose by one or more of the following pathways: S-demethylation, conversion of thiomethyl into hydroxyl, N-de-ethylation, oxidation of the terminal carbon of the ethyl group to a carboxylic acid, oxidation of a terminal carbon of the t-butyl group to an alcohol or a carboxylic acid, or conjugation with glucuronic acid.
Carbon-labeled terbutryn was admin as single oral doses to rats and goats. Urine was collected at intervals up to 72 hr and then analyzed ... after isolation of glucuronides by chromatographic procedures. Five conjugates isolated and identified were: 2-amino-4-(t-butylamino)-6-(S-glucuronyl)-s-triazine; 2-(t-butylamino)-4-ethylamino-6-(S-glucuronyl)-s-triazine; 2-ethyl-amino-(2-methyl)glucuronylpropyl)amino-6-(S-methylthio)-s-triazine; 2-amino-4-(2-(1-glucuronyl-2-methylpropyl)amino)-6-methylthio-s-triazine; 2-ethylamino-4-(2-(2-methyl propan-1-olyl)amino)-6-(S-glucuronyl)-s-triazine.
After administration of terbutryne to rats, urinary metabolites observed ... included: 2-hydroxy terbutryne; 2-amino-4-hydroxy-6-t-butylamino-s-triazine; 2-amino-4-t-butylamino-6-mercapto-s-triazine; two S-glucuronides and two t-butyl-O-glucuronides. Other metabolites were formed by one or a combination of the following reactions: N-alkyl oxidation to alcohols or acids: S-demethylation; N-deethylation; and disulfide formation.
Microsomes prepared from livers from 30 to 70 year old patients undergoing liver resection were incubated with 6.3 to 1,000 uM atrazine, terbuthylazine, terbutryne, or ametryne , and the incubation mixtures were analyzed for metabolites. The compounds produced a variety of metabolites indicative of S-oxidation, N-dealkylation, and side chain C-oxidation. The metabolites were formed by processes showing biphasic kinetics, Michaelis constants for the first and second phases varying from 1.4 to 20 uM and from 54 to 530 uM, respectively. Atrazine, terbuthylazine, ametryne, or terbutryne at 25 uM was incubated with human liver microsomes containing substrates for cytochrome-P4501A2 (CYP1A2), cytochrome-P4502A6, cytochrome-P4502D6, cytochrome-P4502C9, cytochrome-P4502C19, cytochrome-P4502E1, or cytochrome-P4503A4 (CYP3A4) isozymes. Other microsomal preparations were incubated with 25 or 600 uM of the S-triazines in the presence or absence of alpha-naphthoflavone (aNF), furafylline, quinidine, sulfaphenazole, diethyl-dithiocarbamate, gestodene, or ketoconazole, inhibitors of various specific cytochrome-P450 (P450) isozymes, at concentrations 5 to 10 times greater than their inhibition constants. Microsomal preparations containing substrates for CYP1A2 and CYP3A4 showed the best correlation with the rates of metabolism of the S-triazines. Only aNF and furafylline, inhibitors of CYP1A2, inhibited metabolism of the S-triazines. A human liver microsomal preparation with demonstrated high levels of flavin containing monooxygenase (FMO) activity and purified recombinant human FMO-3 were incubated with ametryne and terbutryne. The extent of sulfoxidation of the two compounds was determined. No significant formation of sulfoxide metabolites was detected, indicating that the FMO system was not involved in the metabolism of S- triazines by human liver microsomes. The authors conclude that these results clearly identify CYP1A2 as the major phase-I P450 isozyme that is involved in the metabolism of S-triazines by human liver microsomes.
For more Metabolism/Metabolites (Complete) data for TERBUTRYNE (7 total), please visit the HSDB record page.
Terbutryn has known human metabolites that include Terbutrynsulfoxide, t-Butylhydroxy-terbutryn, and 2-Hydroxyethylterbutryn.
Toxicity/Toxicokinetics
Toxicity Data
LC50 (rat) > 8,000 mg/m3/4h
Non-Human Toxicity Values
LD50 Rabbit dermal >2,000 mg/kg
LD50 Rat oral 2450-2500 mg/kg
LD50 Rat oral 2045 mg/kg
LC50 Rat inhalation >8 mg/L/4 hr /80% formulation/
For more Non-Human Toxicity Values (Complete) data for TERBUTRYNE (8 total), please visit the HSDB record page.
References
Environ Sci Technol. 2014;48(1):244-54.
Additional Infomation
Terbutryn is a methylthio-1,3,5-triazine that is 2-(methylsulfanyl)-1,3,5-triazine substituted by a tert-butylamino and an ethylamino group at positions 2 and 4 respectively. It has a role as a herbicide, a xenobiotic and an environmental contaminant. It is a methylthio-1,3,5-triazine and a diamino-1,3,5-triazine.
Mechanism of Action
... Their chief mode of action appears to involve carbohydrate metabolism. The chlorinated s-triazines inhibit starch accumulation by blocking the prodn of sugars. Similar behavior has been shown for the methoxy & methylthio-s-triazines. It has been reported that the s-triazines affect the tricarboxylic acid cycle with activation of phospho-phenyl pyruvate-carboxylase causing the disappearance of sucrose & glyceric acid with the formation of aspartic & malic acids. /S-triazines/
Inhibition of photosynthesis by disruption of light reactions and blockade of electron transport is the mechanism of action of the 1,3,5-triazine herbicides. /1,3,5-Triazines, from table/
The influence of some s-triazine herbicides on acid phosphatase and phosphodiesterase from corn (Zea mays) roots were investigated. Terbutryn stimulated both phosphatases, whereas prometryn stimulated only the phosphodiesterase. Atrazine desmetryn, prometon, and simazine inhibited acid phosphatase. No effect was exerted by ametryn. The enzyme assays and the kinetic parameters demonstrated that the interferences observed were due to an action on the synthesis of one or both enzymes rather than on the enzyme reactions. The types of the N-alkyl and the chlorine-subsitutuent groups in the structures of the s-triazines tested appear important in determing the degree of the interference.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C10H19N5S
Molecular Weight
241.35636
Exact Mass
241.136
CAS #
886-50-0
Related CAS #
Terbutryn-d5;1219804-47-3
PubChem CID
13450
Appearance
WHITE, CRYSTALLINE
White powder
Density
1.45
Boiling Point
154-160°C
Melting Point
104-105°C
Flash Point
2 °C
Index of Refraction
1.55
LogP
2.381
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
5
Heavy Atom Count
16
Complexity
206
Defined Atom Stereocenter Count
0
SMILES
N1C(NCC)=NC(NC(C)(C)C)=NC=1SC
InChi Key
IROINLKCQGIITA-UHFFFAOYSA-N
InChi Code
InChI=1S/C10H19N5S/c1-6-11-7-12-8(15-10(2,3)4)14-9(13-7)16-5/h6H2,1-5H3,(H2,11,12,13,14,15)
Chemical Name
2-N-tert-butyl-4-N-ethyl-6-methylsulfanyl-1,3,5-triazine-2,4-diamine
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ≥ 100 mg/mL (~414.32 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (10.36 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (10.36 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.1432 mL 20.7159 mL 41.4319 mL
5 mM 0.8286 mL 4.1432 mL 8.2864 mL
10 mM 0.4143 mL 2.0716 mL 4.1432 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us