yingweiwo

Tenacissoside I

Alias: Tenacissoside I; 191729-44-9; [(1S,3R,6R,7S,8S,9S,10S,11S,14S,16S)-6-acetyl-8-acetyloxy-14-[(2R,4R,5R,6R)-5-[(2S,3R,4R,5R,6R)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy-4-methoxy-6-methyloxan-2-yl]oxy-7,11-dimethyl-2-oxapentacyclo[8.8.0.01,3.03,7.011,16]octadecan-9-yl] benzoate; Pregnan-20-one, 12-(acetyloxy)-11-(benzoyloxy)-3-[[2,6-dideoxy-4-O-(6-deoxy-3-O-methyl-beta-D-allopyranosyl)-3-O-methyl-beta-D-arabino-hexopyranosyl]oxy]-8,14-epoxy-, (3beta,5alpha,11alpha,12beta,14beta,17alpha)-;
Cat No.:V32043 Purity: ≥98%
Tenacissoside I is a C21 steroid from Marsdenia tenacissima and is found in higher concentrations in M. tenacissima.
Tenacissoside I
Tenacissoside I Chemical Structure CAS No.: 191729-44-9
Product category: New2
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Tenacissoside I is a C21 steroid from Marsdenia tenacissima and is found in higher concentrations in M. tenacissima.
Biological Activity I Assay Protocols (From Reference)
Targets
Natural product
ln Vitro
Marsdenia tenacissima, which is widely used as an anticancer herb in traditional Chinese medicine, has been shown to possess anticancer activity. However, its metabolic profile is poorly investigated. Tenacigenin B is the major steroidal skeleton of C-21 steroids in M. tenacissima. Tenacissoside H and Tenacissoside I are detected at relatively high levels in M. tenacissima. Therefore, we studied their metabolic characteristics in human liver microsomes by ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry. Fourteen metabolites were tentatively identified by accurate mass measurement and MS/MS fragmentation behavior. It was found that hydroxylation reactions were the major metabolic pathway of Tenacissoside H and Tenacissoside I in human liver microsomes, whereas the metabolic pathway of Tenacigenin B involved dehydrogenation reactions. This is the first time that the metabolic profile of C-21 steroids from M. tenacissima has been explored in human liver microsomes, which is of great significance for subsequent pharmacokinetic and interaction research. Biotransformation in vivo or in vitro may influence the structure of a compound and change its activity. Identification of their fragmentation behaviors and metabolites provides valuable and new information for further understanding the anti-tumor activity of M. tenacissima[1].
ln Vivo
A specific, sensitive and accurate analytical LC-MS/MS assay was developed for the simultaneous determination of two steroidal glycosides, tenacissoside H and tenacissoside I, in rat plasma. An Agilent ZORBAX SB-C18 column was used with an isocratic mobile phase system composed of methanol-water-formic acid (70:30:0.1, v/v/v) at a flow rate of 0.3 mL/min. The analysis was performed on a positive ionization electrospray mass spectrometer via selected reaction monitoring mode scan. One-step protein precipitation with acetonitrile was chosen to extract the analytes from plasma. The lower limits of quantification were 0.9 ng/mL for tenacissoside H and tenacissoside I. The intra- and inter-day precisions were 2.03-11.56 and 3.76-11.62%, respectively, and the accuracies were <110.28% at all quality control levels. The validated method was applied to a pharmacokinetic study in rats after oral gavage of Marsdenia tenacissima extract[2].
References

[1]. Metabolic profiling of tenacigenin B, tenacissoside H and tenacissoside I using UHPLC-ESI-Orbitrap MS/MS. Biomed Chromatogr. 2016 Nov;30(11):1757-1765.

[2]. Simultaneous quantification of two steroidal glycosides after oral gavage of Marsdenia tenacissima extract in rats using a LC-MS/MS method. Biomed Chromatogr. 2015 Apr;29(4):633-40.

Additional Infomation
Tenacissoside I has been reported in Marsdenia tenacissima with data available.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C44H62O14
Molecular Weight
814.9547
Exact Mass
814.413
CAS #
191729-44-9
PubChem CID
91973812
Appearance
White to off-white solid powder
Density
1.3±0.1 g/cm3
Boiling Point
850.8±65.0 °C at 760 mmHg
Flash Point
247.2±27.8 °C
Vapour Pressure
0.0±0.3 mmHg at 25°C
Index of Refraction
1.580
LogP
5.34
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
14
Rotatable Bond Count
12
Heavy Atom Count
58
Complexity
1550
Defined Atom Stereocenter Count
19
SMILES
O1[C@@]23C([H])([H])C([H])([H])[C@]4([H])C([H])([H])C([H])(C([H])([H])C([H])([H])[C@]4(C([H])([H])[H])[C@]2([H])C([H])(C([H])([C@]2(C([H])([H])[H])[C@@]([H])(C(C([H])([H])[H])=O)C([H])([H])C([H])([H])[C@]132)OC(C([H])([H])[H])=O)OC(C1C([H])=C([H])C([H])=C([H])C=1[H])=O)OC1([H])C([H])([H])C([H])(C([H])(C([H])(C([H])([H])[H])O1)OC1([H])C([H])(C([H])(C([H])(C([H])(C([H])([H])[H])O1)O[H])OC([H])([H])[H])O[H])OC([H])([H])[H]
InChi Key
HXIHLBDNTFYMIC-ROIFRVDESA-N
InChi Code
InChI=1S/C44H62O14/c1-22(45)29-16-19-44-42(29,6)38(54-25(4)46)36(56-39(49)26-12-10-9-11-13-26)37-41(5)17-15-28(20-27(41)14-18-43(37,44)58-44)55-31-21-30(50-7)34(24(3)52-31)57-40-33(48)35(51-8)32(47)23(2)53-40/h9-13,23-24,27-38,40,47-48H,14-21H2,1-8H3/t23-,24-,27+,28+,29+,30-,31+,32-,33-,34-,35-,36+,37-,38-,40+,41+,42+,43+,44-/m1/s1
Chemical Name
[(1S,3R,6R,7S,8S,9S,10S,11S,14S,16S)-6-acetyl-8-acetyloxy-14-[(2R,4R,5R,6R)-5-[(2S,3R,4R,5R,6R)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy-4-methoxy-6-methyloxan-2-yl]oxy-7,11-dimethyl-2-oxapentacyclo[8.8.0.01,3.03,7.011,16]octadecan-9-yl] benzoate
Synonyms
Tenacissoside I; 191729-44-9; [(1S,3R,6R,7S,8S,9S,10S,11S,14S,16S)-6-acetyl-8-acetyloxy-14-[(2R,4R,5R,6R)-5-[(2S,3R,4R,5R,6R)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy-4-methoxy-6-methyloxan-2-yl]oxy-7,11-dimethyl-2-oxapentacyclo[8.8.0.01,3.03,7.011,16]octadecan-9-yl] benzoate; Pregnan-20-one, 12-(acetyloxy)-11-(benzoyloxy)-3-[[2,6-dideoxy-4-O-(6-deoxy-3-O-methyl-beta-D-allopyranosyl)-3-O-methyl-beta-D-arabino-hexopyranosyl]oxy]-8,14-epoxy-, (3beta,5alpha,11alpha,12beta,14beta,17alpha)-;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~122.71 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (3.07 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (3.07 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (3.07 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.2271 mL 6.1353 mL 12.2707 mL
5 mM 0.2454 mL 1.2271 mL 2.4541 mL
10 mM 0.1227 mL 0.6135 mL 1.2271 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us