yingweiwo

Teglarinad chloride

Cat No.:V21702 Purity: ≥98%
Teglarinad chloride(GMX-1777) is a prodrug of GMX-1778 which is a nicotinamide phosphoribosyl transferase inhibitor antitumor activity.
Teglarinad chloride
Teglarinad chloride Chemical Structure CAS No.: 432037-57-5
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description

Teglarinad chloride (GMX-1777) is a prodrug of GMX-1778 which is a nicotinamide phosphoribosyl transferase inhibitor antitumor activity. It is a novel and potent NAMPT inhibitor that also enhances radiation efficacy, mediated by interference with DNA repair and antiangiogenesis.

Biological Activity I Assay Protocols (From Reference)
ln Vivo
Colon cancer (HCT-116), small cell lung cancer (SHP-77) and IM-9 models can all show tumor regression in response to GMX1777 (75 mg/kg; intravenous infusion administered every 24 hours) [2]. In vivo, GMX1777 (50–100 mg/kg/d, intramuscular injection for 5 days) is efficacious against FaDu and C666-1 tumors when used in conjunction with or instead of local tumor irradiation [1]. In mouse plasma, GMX1777 (25–400 mg/kg; 24-hour intravenous infusion) quickly transforms into GMX1778, with GMX1777 having a half-life of less than 0.7 hours [2].
Animal Protocol
Animal/Disease Models: CB17 SCID/SCID female mice bearing subcutaneousIM-9 multiple myeloma tumors [2]
Doses: 18.75, 35, 75 mg/kg
Route of Administration: 24-hour intravenous (iv) (iv)infusion
Experimental Results: Induced almost complete tumor regression , and Dramatically improved tumor growth delay at the dose of 75mg/kg. 37.5 mg/kg moderately reduces IM-9 tumor growth.
ADME/Pharmacokinetics
Metabolism / Metabolites
GMX1777 is rapidly converted to GMX1778 in vivo through hydrolytic cleavage of an ester carbonate bond.
References

[1]. Efficacy of combining GMX1777 with radiation therapy for human head and neck carcinoma. Clin Cancer Res. 2010 Feb 1;16(3):898-911.

[2]. Preclinical development of the nicotinamide phosphoribosyl transferase inhibitor prodrug GMX1777. Anticancer Drugs. 2009 Jun;20(5):346-54.

Additional Infomation
GMX1777 is a water-soluble prodrug of the cyanoguanidine compound GMX1778 with potential antineoplastic activity. In vivo, apoptosis inducer GMX1777 is rapidly converted into GMX1778 through hydrolytic cleavage of a carbonate ester bond. Although the exact mechanism of action has yet to be fully elucidated, GMX1778 appears to antagonize nuclear factor-kappa B (NF-kB) transcription, resulting in the induction of tumor cell apoptosis.
Teglarinad Chloride is a water-soluble prodrug of a cyanoguanidine compound with potential antineoplastic activity. In vivo, teglarinad chloride is rapidly converted into active drug through hydrolytic cleavage of a carbonate ester bond. Although the exact mechanism of action has yet to be fully elucidated, the active drug appears to antagonize nuclear factor-kappa B (NF-kB) transcription, resulting in the induction of tumor cell apoptosis.
Drug Indication
Intended for the treatment of solid tumors and lymphomas.
Mechanism of Action
The cytotoxicity of GMX1777, a prodrug of GMX1778, occurs exclusively through its ability to selectively inhibit nicotinamide phosphoribosyl transferase (NAMPRT). Tumor cells have elevated NAMPRT, an enzyme involved in the biosynthesis of oxidized nicotinamide adenine dinucleotide (NAD+). These cells have a high rate of NAD+ turnover due to elevated glycolysis and high ADP-ribosylation activity required for DNA repair, genome stability and telomere maintenance. These latter characteristics make cancer cells more susceptible to NAMPRT inhibition than normal cells. Although the mechanism of action of GMX1778 was initially believed to include NF-κB inhibition, a transcriptional factor that plays a role in cancer cell survival, NF-κB inhibition occurs as a consequence of ATP loss following NAMPRT inhibition and NAD+ decline.
Pharmacodynamics
GMX1777 exhibits unusually potent anti-tumor activity in preclinical animal models. The novel mechanism of action of GMX1778 supports the clinical use of GMX1777 as an anti-cancer agent. Moreover, the strong dependency of cancer cells on NAD+ to support DNA repair suggests a strong rationale for the use of GMX1777 in combination with DNA damaging agents for future trials.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C30H43N5O8CL+.CL-
Molecular Weight
672.59712
Exact Mass
671.249
CAS #
432037-57-5
Related CAS #
766501-75-1 (cation);432037-57-5 (chloride);
PubChem CID
9961434
Appearance
White to off-white solid powder
Melting Point
158-159ºC
LogP
5.108
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
11
Rotatable Bond Count
27
Heavy Atom Count
45
Complexity
802
Defined Atom Stereocenter Count
0
InChi Key
DAHMXVAETAAQOZ-UHFFFAOYSA-N
InChi Code
InChI=1S/C30H42ClN5O8.ClH/c1-38-16-17-39-18-19-40-20-21-41-22-23-43-30(37)44-25-36-13-10-27(11-14-36)35-29(34-24-32)33-12-4-2-3-5-15-42-28-8-6-26(31)7-9-28;/h6-11,13-14H,2-5,12,15-23,25H2,1H3,(H,33,34);1H
Chemical Name
[4-[[N'-[6-(4-chlorophenoxy)hexyl]-N-cyanocarbamimidoyl]amino]pyridin-1-ium-1-yl]methyl 2-[2-[2-(2-methoxyethoxy)ethoxy]ethoxy]ethyl carbonate;chloride
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~66.67 mg/mL (~99.12 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 5 mg/mL (7.43 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 50.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 5 mg/mL (7.43 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 50.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 5 mg/mL (7.43 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 50.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.4868 mL 7.4338 mL 14.8677 mL
5 mM 0.2974 mL 1.4868 mL 2.9735 mL
10 mM 0.1487 mL 0.7434 mL 1.4868 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us