Size | Price | |
---|---|---|
Other Sizes |
Targets |
Natural tea polyphenol
|
---|---|
ln Vitro |
Tea polyphenols known as catechins are key components with many biological functions, including anti-inflammatory, antioxidative, and anticarcinogenic effects. These effects are induced by the suppression of several inflammatory factors including nuclear factor-kappa B (NF-kappaB). While these characteristics of catechins have been well documented, actions of catechins as mediators on inflammation-related cardiovascular diseases have not yet been well investigated. In this article, we reviewed recent papers to reveal the anti-inflammatory effects of catechins in cardiovascular diseases. In our laboratory, we performed oral administration of catechins into murine and rat models of cardiac transplantation, myocarditis, myocardial ischemia, and atherosclerosis to reveal the effects of catechins on the inflammation-induced ventricular and arterial remodeling. From our results, catechins are potent agents for the treatment and prevention of inflammation-related cardiovascular diseases because they are critically involved in the suppression of proinflammatory signaling pathways[1].
|
ln Vivo |
In diabetic models of diabetes, tea polyphenols (400 mg/(kg√d) in the diet for eight weeks) can lower blood pressure and blood lipids [1]. When there is a chronic cerebral infusion shortage, tea polyphenols (400 mg/(kg√d) in diet) can help with spatial cognition problems [5]. After the forced swim test (FST) and tail suspension test (TST) in mice, tea polyphenols (5–20 mg/kg, most recently, for 7 days) demonstrated resistance comparable to tea polyphenols (100–400 mg/kg daily in the diet). Acetaminophen protects the mouse model from hepatotoxicity by reducing the expression of CYP2E1 and CYP1A2 in mice [7]. Rat model of diabetic cardiomyopathy [1]
|
Enzyme Assay |
Tea is the most popular beverage in the world, second only to water. Tea contains an infusion of the leaves from the Camellia sinensis plant rich in polyphenolic compounds known as catechins, the most abundant of which is (-)-EGCG. Although tea has been consumed for centuries, it has only recently been studied extensively as a health-promoting beverage that may act to prevent a number of chronic diseases and cancers. The results of several investigations indicate that green tea consumption may be of modest benefit in reducing the plasma concentration of cholesterol and preventing atherosclerosis. Additionally, the cancer-preventive effects of green tea are widely supported by results from epidemiological, cell culture, animal and clinical studies. In vitro cell culture studies show that tea polyphenols potently induce apoptotic cell death and cell cycle arrest in tumor cells but not in their normal cell counterparts. Green tea polyphenols were shown to affect several biological pathways, including growth factor-mediated pathway, the mitogen-activated protein (MAP) kinase-dependent pathway, and ubiquitin/proteasome degradation pathways. Various animal studies have revealed that treatment with green tea inhibits tumor incidence and multiplicity in different organ sites such as skin, lung, liver, stomach, mammary gland and colon. Recently, phase I and II clinical trials have been conducted to explore the anticancer effects of green tea in humans. A major challenge of cancer prevention is to integrate new molecular findings into clinical practice. Therefore, identification of more molecular targets and biomarkers for tea polyphenols is essential for improving the design of green tea trials and will greatly assist in a better understanding of the mechanisms underlying its anti-cancer activity[2].
|
Animal Protocol |
Animal/Disease Models: Diabetic cardiomyopathy model rats[1]
Doses: 400 mg/(kg∙d) Route of Administration: in diet for eight weeks Experimental Results:Lowers serum glucose and blood lipids. Improved myocardial structure and function. Induced autophagy in rats in a high-fat state (Increased level of Beclin-1 and the ratio of LC3-II to LC3-I). Methods: Sixty Sprague-Dawley (SD) rats were randomly divided into six groups: a normal control group (NC), an obesity group (OB), a diabetic cardiomyopathy group (DCM), a tea polyphenol group (TP), an obesity tea polyphenol treatment group (OB-TP), and a diabetic cardiomyopathy tea polyphenol treatment group (DCM-TP). After successful modeling, serum glucose, cholesterol, and triglyceride levels were determined; cardiac structure and function were inspected by ultrasonic cardiography; myocardial pathology was examined by staining with hematoxylin-eosin; transmission electron microscopy was used to observe the morphology and quantity of autophagosomes; and expression levels of autophagy-related proteins LC3-II, SQSTM1/p62, and Beclin-1 were determined by Western blotting. Results: Compared to the NC group, the OB group had normal blood glucose and a high level of blood lipids; both blood glucose and lipids were increased in the DCM group; ultrasonic cardiograms showed that the fraction shortening was reduced in the DCM group. However, these were improved significantly in the DCM-TP group. Hematoxylin-eosin staining showed disordered cardiomyocytes and hypertrophy in the DCM group; however, no differences were found among the remaining groups. Transmission electron microscopy revealed that the numbers of autophagosomes in the DCM and OB-TP groups were obviously increased compared to the NC and OB groups; the number of autophagosomes in the DCM-TP group was reduced. Western blotting showed that the expression of LC3-II/I and Beclin-1 increased obviously, whereas the expression of SQSTM1/p62 was decreased in the DCM and OB-TP groups (P<0.05). Conclusions: Tea polyphenols had an effect on diabetic cardiomyopathy in rat cardiac function and may alter the levels of autophagy to improve glucose and lipid metabolism in diabetes.[4] |
References |
|
Additional Infomation |
5,7-Dihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-chromen-3-yl 3,4,5-trihydroxybenzoate is a catechin.
5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-chromen-3-yl 3,4,5-trihydroxybenzoate has been reported in Camellia sinensis, Cistus salviifolius, and other organisms with data available. See also: Epigallocatechin Gallate (annotation moved to). Reactive oxide species are the middle products of normal metabolism, and play a crucial role in cell signaling transduction. On the contrary, accumulation of excess reactive oxide species results in oxidative stress that often brings multifarious impairment to cells, including decrease of ATP level in cells, elevation of cytosolic Ca2+, DNA damage, dysfunction of biological function in lipid bilayer and so on. These effects will finally lead to all kinds of diseases. Tea polyphenols are widely considered as a kind of excellent antioxidant agents. It can be antioxidants by directly scavenging reactive oxide species or chelating transition metals, and indirectly upregulating the activity of antioxidant enzymes. In addition, tea polyphenols have also been observed a potent pro-oxidant capacity, which directly leads to the generation of reactive oxide species, and indirectly induces apoptosis and death of cancer cells. The underlying characters of its pro-oxidant activity in some diseases is not well understood. The present review we will discuss the dual character of tea polyphenols, both antioxidant and pro-oxidant properties, in some human diseases induced by oxidative stress.[3] |
Molecular Formula |
C22H18O11
|
---|---|
Molecular Weight |
458.3717
|
Exact Mass |
458.084
|
CAS # |
84650-60-2
|
Related CAS # |
84650-60-2 (Tea polyphenol);84650-60-2 (green tea extract);
|
PubChem CID |
1287
|
Appearance |
Brown to reddish brown solid powder
|
Density |
1.9±0.1 g/cm3
|
Boiling Point |
909.1±65.0 °C at 760 mmHg
|
Flash Point |
320.0±27.8 °C
|
Vapour Pressure |
0.0±0.3 mmHg at 25°C
|
Index of Refraction |
1.857
|
LogP |
2.08
|
Hydrogen Bond Donor Count |
8
|
Hydrogen Bond Acceptor Count |
11
|
Rotatable Bond Count |
4
|
Heavy Atom Count |
33
|
Complexity |
667
|
Defined Atom Stereocenter Count |
0
|
SMILES |
O1C2C=C(C=C(C=2CC(C1C1C=C(C(=C(C=1)O)O)O)OC(C1C=C(C(=C(C=1)O)O)O)=O)O)O
|
InChi Key |
WMBWREPUVVBILR-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C22H18O11/c23-10-5-12(24)11-7-18(33-22(31)9-3-15(27)20(30)16(28)4-9)21(32-17(11)6-10)8-1-13(25)19(29)14(26)2-8/h1-6,18,21,23-30H,7H2
|
Chemical Name |
[5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-chromen-3-yl] 3,4,5-trihydroxybenzoate
|
Synonyms |
84650-60-2; 5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-chromen-3-yl 3,4,5-trihydroxybenzoate; Tea, ext.; [5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-chromen-3-yl] 3,4,5-trihydroxybenzoate; 107965-88-8; CHEMBL311663; 5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3-yl 3,4,5-trihydroxybenzoate; 5,7-Dihydroxy-2-(3,4,5-trihydroxyphenyl)chroman-3-yl 3,4,5-trihydroxybenzoate;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~32.5 mg/mL
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 3.25 mg/mL (Infinity mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 32.5 mg/mL clear DMSO stock solution to 400 μL of PEG300 and mix evenly; then add 50 μL of Tween-80 to the above solution and mix evenly; then add 450 μL of normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 3.25 mg/mL (Infinity mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 32.5 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.1816 mL | 10.9082 mL | 21.8164 mL | |
5 mM | 0.4363 mL | 2.1816 mL | 4.3633 mL | |
10 mM | 0.2182 mL | 1.0908 mL | 2.1816 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.