yingweiwo

TAS-114

Cat No.:V15770 Purity: ≥98%
TAS-114 is an orally bioactive dual-target inhibitor of dUTPase and dihydropyrimidine dehydrogenase (DPD) that enhances the efficacy of fluoropyrimidine-active molecules.
TAS-114
TAS-114 Chemical Structure CAS No.: 1198221-21-4
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
50mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
TAS-114 is an orally bioactive dual-target inhibitor of dUTPase and dihydropyrimidine dehydrogenase (DPD) that enhances the efficacy of fluoropyrimidine-active molecules.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
The cytotoxicity of 2-deoxy-5-fluorouridine (FdUrd) and 5-fluorouracil (5-FU) against various mold strains is enhanced in a dose-dependent manner by TAS-114 (1-10 μM; 72 hours) [1].
ln Vivo
TAS-114 (37.5-1, 200 mg/kg/day; sidewall; days 1-14) enhances capecitabine (539 mg/kg/day) and 5-FU anti-tumor efficacy in mice.
Cell Assay
Cytotoxicity assay[1]
Cell Types: HeLa, NUGC-4, NCI-H441, HT-29, CFPAC-1 and MCF-7 Cell line
Tested Concentrations: 72 hrs (hours)
Incubation Duration: 1 μM, 3 μM and 10 μM
Experimental Results: The cytotoxicity of FdUrd and 5-FU to various cancer cell lines was Dramatically increased in a dose-dependent manner.
Animal Protocol
Animal/Disease Models: BALB/c nude mouse MX-1 human breast cancer xenograft [1]
Doses: 37.5 to 1,200 mg/kg/day
Route of Administration: Oral; active [1]. Routine; Days 1-14
Experimental Results: The tolerated dose of capecitabine (539 mg/kg/day) was diminished in mice in a dose-dependent manner.
References

[1]. TAS-114, a First-in-Class Dual dUTPase/DPD Inhibitor, Demonstrates Potential to Improve Therapeutic Efficacy of Fluoropyrimidine-Based Chemotherapy. Mol Cancer Ther. 2018 Aug;17(8):1683-1693.

Additional Infomation
dUTPase/DPD Inhibitor TAS-114 is an orally bioavailable inhibitor of both deoxyuridine triphosphatase (dUTPase) and dihydropyrimidine dehydrogenase (DPD), with potential antineoplastic adjuvant activity. Upon oral administration in combination with a prodrug of the pyrimidine antagonist 5-fluorouracil (5-FU), TAS-114 inhibits (DPD), the liver enzyme responsible for rapid catabolism of 5-FU into inactive metabolites. This prevents first-pass metabolism of 5-FU, allowing oral administration of the 5-FU prodrug and increasing the efficacy of 5-FU. In addition, as a dUTPase inhibitor, TAS-114 enhances the antitumor activity of 5-FU by preventing the hydrolysis and breakdown of 5-fluoro-deoxyuridine triphosphate (FdUTP) and deoxyuridine triphosphate (dUTP), which are active metabolites of 5-FU. This promotes DNA polymerase-dependent incorporation of these antimetabolites into DNA and leads to DNA damage and tumor cell death. Co-administration with TAS-114 allows lower dosing of 5-FU prodrugs, which decreases 5-FU-related toxicity, while maintaining therapeutic levels of 5-FU at the tumor site.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C21H29N3O6S
Molecular Weight
451.536464452744
Exact Mass
451.177
CAS #
1198221-21-4
Related CAS #
1198221-48-5 (Racemic);1198221-21-4 (R-isomer);
PubChem CID
53630253
Appearance
White to yellow solid powder
LogP
1.8
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
7
Rotatable Bond Count
11
Heavy Atom Count
31
Complexity
745
Defined Atom Stereocenter Count
1
SMILES
S(CCCOCN1C=CC(NC1=O)=O)(N[C@H](C)C1=CC=CC(=C1)OC1CCCC1)(=O)=O
InChi Key
AMCGLRWKUQPNKD-MRXNPFEDSA-N
InChi Code
InChI=1S/C21H29N3O6S/c1-16(17-6-4-9-19(14-17)30-18-7-2-3-8-18)23-31(27,28)13-5-12-29-15-24-11-10-20(25)22-21(24)26/h4,6,9-11,14,16,18,23H,2-3,5,7-8,12-13,15H2,1H3,(H,22,25,26)/t16-/m1/s1
Chemical Name
N-[(1R)-1-(3-cyclopentyloxyphenyl)ethyl]-3-[(2,4-dioxopyrimidin-1-yl)methoxy]propane-1-sulfonamide
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~221.46 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (5.54 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (5.54 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (5.54 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.2146 mL 11.0732 mL 22.1464 mL
5 mM 0.4429 mL 2.2146 mL 4.4293 mL
10 mM 0.2215 mL 1.1073 mL 2.2146 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us