yingweiwo

Stachydrine

Cat No.:V30492 Purity: ≥98%
Stacidine is the major component of the Chinese herb Motherwort and is used to promote blood circulation and eliminate blood stasis.
Stachydrine
Stachydrine Chemical Structure CAS No.: 471-87-4
Product category: New2
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
10mg
50mg
100mg
Other Sizes

Other Forms of Stachydrine:

  • Stachydrine hydrochloride
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Stacidine is the major component of the Chinese herb Motherwort and is used to promote blood circulation and eliminate blood stasis. Stachydrine inhibits the NF-κB signaling pathway.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
Stachyine's anti-hypertrophic action may be associated with its ability to suppress the NF-κB signaling pathway. The levels of NF-κB protein in the nucleus and p-IκB protein in the cytoplasm are both markedly inhibited by strepthydrine intervention [1]. After stachydrine treatment, human umbilical vein endothelial cells exhibit a decrease in tissue factor mRNA. Stachyrine has the ability to mitigate the effects of hypoxia and reoxygenation-induced increases in LDH activity and decreases in human umbilical vein endothelial cell viability [2]. Stachydrine-treated human prostate cancer cells (PC-3 and LNcaP) showed a dose-dependent reduction in both protein levels and mRNA expression [3].
ln Vivo
Stachyhydrine treatment can decrease the expression of PERK, CHOP, and caspase-3 in the endoplasmic reticulum stress-related apoptotic pathway [5]. Stachyhydrine can also potentially protect against β-adrenergic receptor-induced Ca2+ mishandling [4].
References

[1]. Effect of Leonurus stachydrine on myocardial cell hypertrophy. Zhong Yao Cai. 2012 Jun;35(6):940-3.

[2]. Stachydrine, a major constituent of the Chinese herb leonurus heterophyllus sweet, ameliorates human umbilical vein endothelial cells injury induced by anoxia-reoxygenation. Am J Chin Med. 2010;38(1):157-71.

[3]. In vitro anticancer activity of stachydrine isolated from Capparis decidua on prostate cancer cell lines. Nat Prod Res. 2012;26(18):1737-40.

[4]. Effects of stachydrine on norepinephrine-induced neonatal rat cardiac myocytes hypertrophy and intracellular calcium transients. BMC Complement Altern Med. 2014 Dec 8;14:474.

[5]. Effect of stachydrine on endoplasmic reticulum stress-induced apoptosis in rat kidney after unilateral ureteral obstruction. J Asian Nat Prod Res. 2013;15(4):373-81.

Additional Infomation
L-proline betaine is an amino acid betaine that is L-proline zwitterion in which both of the hydrogens attached to the nitrogen are replaced by methyl groups. It has a role as a food component, a plant metabolite and a human blood serum metabolite. It is a N-methyl-L-alpha-amino acid, an alkaloid and an amino-acid betaine. It is functionally related to a L-prolinium. It is a conjugate base of a N,N-dimethyl-L-prolinium. It is an enantiomer of a D-proline betaine.
Stachydrine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Stachydrine has been reported in Leonurus japonicus, Achillea setacea, and other organisms with data available.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C7H14NO2
Molecular Weight
144.1916
Exact Mass
143.094
CAS #
471-87-4
Related CAS #
Stachydrine hydrochloride;4136-37-2
PubChem CID
115244
Appearance
White to off-white solid powder
Density
1.1095 (rough estimate)
Boiling Point
261.28°C (rough estimate)
Melting Point
235°C
Index of Refraction
1.4150 (estimate)
LogP
-2.97
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
2
Rotatable Bond Count
0
Heavy Atom Count
10
Complexity
148
Defined Atom Stereocenter Count
1
SMILES
C[N+]1(CCC[C@H]1C(=O)[O-])C
InChi Key
CMUNUTVVOOHQPW-LURJTMIESA-N
InChi Code
InChI=1S/C7H13NO2/c1-8(2)5-3-4-6(8)7(9)10/h6H,3-5H2,1-2H3/t6-/m0/s1
Chemical Name
(2S)-1,1-dimethylpyrrolidin-1-ium-2-carboxylate
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O : ~100 mg/mL (~698.42 mM)
DMSO : ~100 mg/mL (~698.42 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (17.46 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (17.46 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (17.46 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 110 mg/mL (768.26 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 6.9353 mL 34.6765 mL 69.3529 mL
5 mM 1.3871 mL 6.9353 mL 13.8706 mL
10 mM 0.6935 mL 3.4676 mL 6.9353 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us