Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
5mg |
|
||
10mg |
|
||
50mg |
|
||
Other Sizes |
|
Targets |
MCHR1/melanin-concentrating hormonereceptor1 (Ki= 2.2 nM; Kd=530 pM)
|
---|---|
ln Vitro |
The present study describes the optimisation of an autoradiography assay that provides a means to measure the in vitro potency of melanin-concentrating hormone receptor 1 (MCH(1)) antagonists in native tissues and their ex vivo receptor occupancy. Initial localisation studies demonstrated that the MCH(1) receptor radioligand [(125)I]-S36057 bound to rat caudate putamen with specific binding of consistently >60%. In vitro, the MCH(1) receptor antagonists GW3430, SNAP-94847 and 4'-{[1-(cyclopropylmethyl)piperidin-4-ylidene] [5-fluoro-6-(trifluoromethyl)-1H-benzimidazol-2-yl]methyl}biphenyl-3-carbonitrile (referred to as Compound A) exhibited concentration dependent inhibition of the specific binding of [(125)I]-S36057, with a rank order of affinity of SNAP-94847>Compound A>GW3430. [4]
|
ln Vivo |
SNAP 94847 hydrochloride (oral gavage; 20 mg/kg; 14 days) demonstrated an exaggerated locomotor response to acute quinpirole [Treatment: F(2,19)=11.31, Treatment × Time: F(34,323) = 4.061 ], the effect of SNAP 94847 on quinpirole-induced activity was significant throughout the observation period compared with untreated animals [2]. Addition of SNAP 94847 hydrochloride (po; 20 mg/kg; 21 days) to drinking water significantly increased animal activity compared with untreated animals [Treatment: F(3,28) = 8.971 ;Treatment×time: F(51,476)=11.50]. It was shown that the SNAP 94847 treatment group significantly increased exercise after 40 minutes, and this effect remained significant at 180 minutes [2]. SNAP 94847 hydrochloride (oral; 10 mg/kg) has good bioavailability (59%), low plasma and blood clearance of 4.2 L/hr/kg and 3.3 L/hr/kg, respectively, and a half-life of In a PK study, the duration of action in rats was 5.2 hours [3].
Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide that plays a role in the modulation of food intake and mood. In rodents, the actions of MCH are mediated via the MCHR1 receptor. The goal of this study was to investigate the effects of acute (1 h) and chronic (28 days) p.o. dosing of a novel MCHR1 antagonist, N-[3-(1-{[4-(3,4-difluorophenoxy)-phenyl]methyl}(4-piperidyl))-4-methylphenyl]-2-methylpropanamide (SNAP-94847), in three mouse models predictive of antidepressant/anxiolytic-like activity: novelty suppressed feeding (NSF) in 129S6/SvEvTac mice and light/dark paradigm (L/D) and forced swim test (FST) in BALB/cJ mice. A significant increase in the time spent in the light compartment of the L/D box was observed in response to acute and chronic treatment with SNAP-94847. An anxiolytic/antidepressant-like effect was found in the NSF test after acute and chronic treatment, whereas no effect was observed in the FST. Because neurogenesis in the dentate gyrus has been shown to be a requirement for the effects of antidepressants in the NSF test, we investigated whether neurogenesis was required for the effect of SNAP 94847. We showed that chronic treatment with SNAP 94847 stimulated proliferation of progenitors in the dentate gyrus. The efficacy of SNAP 94847 in the NSF test, however, was unaltered in mice in which neurogenesis was suppressed by X-irradiation. These results indicate that SNAP 94847 has a unique anxiolytic-like profile after both acute and chronic administration and that its mechanism of action is distinct from that of selective serotonin reuptake inhibitors and tricyclic antidepressants. [1] ystemic injections of SNAP 94847 decreased food-reinforced operant responding and MCH-induced reinstatement of food seeking. SNAP-94847 had no effect on pellet-priming-, cue-, or yohimbine-induced reinstatement. Conclusions: Results indicate that MCH1 receptors are involved in food-reinforced operant responding but not in reinstatement induced by acute exposure to high-fat food, food cues, or the stress-like state induced by yohimbine. These results suggest that different mechanisms mediate food-reinforced operant responding and reinstatement of food seeking. [2] |
Enzyme Assay |
Competition binding studies [4]
Coronal sections at the level of the caudate putamen were used for competition binding studies. Briefly, following pre-incubation, sections were incubated with 50 pM [125I]-S36057 in the presence of a range of concentrations (0.01 nM–10 μM) of MCH1 receptor antagonists (GW3430, SNAP-94847 or Compound A; all dissolved and diluted in 100% DMSO, and added to assay buffer such that final concentration of DMSO was constant at 1% in the assay) for 90 min as previously described. Non-specific binding was defined using 1 μM MCH in each case. |
Animal Protocol |
Animal/Disease Models: Rat[2]
Doses: 20 mg/kg Route of Administration: Oral; 20 mg/kg; 14 days Experimental Results: demonstrated excessive locomotor response to acute quinpirole. Animal/Disease Models: Rat[2] Doses: 10 mg/kg Route of Administration: po (po (oral gavage)) 10 mg/kg Experimental Results: It demonstrated good physical and chemical properties in rats. SNAP-94847 (3, 10, 15, and 30 mg/kg, intraperitoneal (i.p.)) was dissolved in 20% 2-hydroxypropyl-β-cyclodextrin (encapsin) and yohimbine (2 mg/kg, i.p.) was dissolved in sterile water. [2] Experiment 1: Effect of SNAP-94847 on food-reinforced operant responding [2] We initially studied the effect of systemic injections of SNAP-94847 on ongoing food-reinforced responding. For 14 days, the rats (n=12) were given one 3-h training session as described above. We then assessed the effect of SNAP-94847 on lever presses for the pellets in four 3-h tests that were conducted every 48 h. We used a within-subjects experimental design with the factors of SNAP-94847 dose (vehicle, 3, 10, and 30 mg/kg) and session hour (hours 1, 2, and 3). Each rat was injected with vehicle or one of the doses of SNAP 94847, in a counterbalanced order. SNAP 94847 or its vehicle was injected 60 min prior to the test sessions because previous studies have demonstrated that SNAP-94847 doses of up to 30 mg/kg achieve significant brain penetration by 60 min (DGS unpublished data and Chen et al. 2007). Experiment 2: Effect of SNAP-94847 on MCH-induced reinstatement of food seeking [2] To determine the effect of SNAP-94847 on MCH-induced reinstatement of food seeking, we initially assessed the effect of MCH on this reinstatement. Following our experiment on the effect of systemic injections of SNAP 94847 on food-reinforced responding, we implanted the rats with a guide cannula into the lateral ventricle. After a postoperative recovery period of 5 days, the rats were retrained to lever press for the high-fat food pellets for 3 days and the lever pressing response was extinguished in 13 daily extinction sessions. The rats (n=12) were injected with vehicle or MCH (2.5, 5, 10, and 20μg, i.c.v.) in five test sessions, every 48 h, in an ascending order of MCH dose, with extinction sessions on the intervening days. We used a within-subjects experimental design with the factors of MCH dose (vehicle, 2.5, 5, 10, and 20μg) and session hour. In a different group of rats (n=10), we examined the effect of SNAP-94847 (30 mg/kg, i.p.) on MCH-induced (20μg) reinstatement. We used a within-subjects experimental design with the within-subjects factors of pretreatment condition (0 or 30 mg/kg SNAP 94847), MCH dose (0, 20μg), and session hour. On test days that were separated by 24–72 h, each rat was injected systemically with SNAP-94847 (30 mg/kg) or its vehicle 60 min before the test sessions and then injected with MCH or its vehicle 8–12 min before the sessions; the injections of MCH and its vehicle and SNAP 94847 and its vehicle were counterbalanced. Experiment 3: Effect of SNAP SNAP-94847 on yohimbine-, pellet-priming-, and cue-induced reinstatement of food seeking [2] Pellet-priming-induced reinstatement We tested the effect of SNAP-94847 on pellet-priming-induced reinstatement in four 3-h test sessions with two sessions run consecutively and one extinction day between the two sets of tests. During the test sessions, three food pellets were administered noncontingently within the first minute of the session (i.e., one pellet delivered every 20 s). We used a mixed experimental design that included the between-subject factor of SNAP dose (15 or 30 mg/kg, n=10 in each group) and the within-subjects factors of pretreatment condition (0 and SNAP-94847 [15 or 30 mg/kg]), priming condition (pellet, no pellet), and session hour. On test days that were separated by 24–72 h, each rat was injected systemically with the SNAP-94847 vehicle or one of the SNAP-94847 doses (15 or 30 mg/kg) 60 min before the test sessions and then exposed to the priming condition (three pellets or no pellets); the injections of SNAP 94847 and its vehicle and the priming conditions were counterbalanced. Cue-induced reinstatement [2] As mentioned above, during the training phase, each pellet delivery was paired with a tone–light cue (cue); this cue was not presented during the extinction phase after lever pressing. During the tests for reinstatement, lever responding led to contingent presentations of the cue under the fixed-ratio 1 20-s timeout reinforcement schedule. We tested the effect of SNAP-94847 on cue-induced reinstatement in a total of four test sessions with two sessions run consecutively and five extinction days between test sets. We conducted five extinction days between sets of tests in accordance with previous experiments demonstrating that this procedure minimizes habituation to the presentation of conditioned cues (unpublished data and Bossert et al. 2006; Ghitza et al. 2007). We used a mixed design with between-subject factor of SNAP dose (15 or 30 mg/kg, n=8 in the 15 mg/kg group and n=10 in the 30 mg/kg group) and the within-subjects factors of pretreatment condition (0 and SNAP-94847 [15 or 30 mg/kg]), cue (cue, no cue), and session hour. Yohimbine-induced reinstatement [2] We tested the effect of SNAP-94847 on yohimbine-induced reinstatement in four test sessions with two sessions run consecutively and one extinction day between sets of tests. We used a mixed experimental design that included the between-subject factor of SNAP dose (15 or 30 mg/kg, n=12 in the 15 mg/kg group and n=19 in the 30 mg/kg group) and the within-subjects factors of pretreatment condition (0 and SNAP-94847 [15 or 30 mg/kg]), yohimbine dose (0 or 2 mg/kg), and session hour. Ten rats each in the 15- and 30-mg/kg SNAP-94847 dose were rats previously tested for the effect of SNAP 94847 on pellet-priming-induced reinstatement. These rats were given 2 days of extinction prior to tests for yohimbine-induced reinstatement. On the test days that were separated by 24–72 h, each rat was injected systemically with the SNAP 94847 vehicle or one of the SNAP 94847 doses (15 or 30 mg/kg) 60 min before the test sessions and then injected with yohimbine 15 min later (i.e., 45 min prior to the test session); the injections of SNAP 94847 or its vehicle and yohimbine or its vehicle were counterbalanced. |
References |
|
Additional Infomation |
Rationale and objectives: The melanin-concentrating hormone 1 (MCH1) receptors play an important role in home-cage food consumption in rodents, but their role in operant high-fat food-reinforced responding or reinstatement of food seeking in animal models is unknown. Here, we used the MCH1 receptor antagonist SNAP 94847 to explore these questions.
Materials and methods: In experiment 1, we trained food-restricted rats (16 g/day of nutritionally balanced rodent diet) to lever press for high-fat (35%) pellets (3-h/day, every other day) for 14 sessions. We then tested the effect of SNAP 94847 (3-30 mg/kg, intraperitoneal (i.p.)) on food-reinforced operant responding. In experiments 2 and 3, we trained rats to lever press for the food pellets (9 to 14 3-h sessions) and subsequently extinguished the food-reinforced lever responding by removing the food (10 to 17 sessions). We then tested the effect of SNAP 94847 on reinstatement of food seeking induced by MCH (20 microg, intracerebroventricular), noncontingent delivery of three pellets during the first minute of the test session (pellet-priming), contingent tone-light cues previously associated with pellet delivery (cue), or the pharmacological stressor yohimbine (2 mg/kg, i.p.). [2]
|
Molecular Formula |
C29H33CLF2N2O2
|
---|---|
Molecular Weight |
515.0343
|
Exact Mass |
514.219
|
CAS # |
1781934-47-1
|
Related CAS # |
SNAP 94847;487051-12-7
|
PubChem CID |
56972235
|
Appearance |
White to light yellow solid powder
|
Hydrogen Bond Donor Count |
2
|
Hydrogen Bond Acceptor Count |
5
|
Rotatable Bond Count |
7
|
Heavy Atom Count |
36
|
Complexity |
661
|
Defined Atom Stereocenter Count |
0
|
SMILES |
Cl[H].FC1=C(C=CC(=C1)OC1C=CC(=CC=1)CN1CCC(C2C=C(C=CC=2C)NC(C(C)C)=O)CC1)F
|
InChi Key |
DEDUDFNRQKUBRH-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C29H32F2N2O2.ClH/c1-19(2)29(34)32-23-7-4-20(3)26(16-23)22-12-14-33(15-13-22)18-21-5-8-24(9-6-21)35-25-10-11-27(30)28(31)17-25;/h4-11,16-17,19,22H,12-15,18H2,1-3H3,(H,32,34);1H
|
Chemical Name |
N-[3-[1-[[4-(3,4-difluorophenoxy)phenyl]methyl]piperidin-4-yl]-4-methylphenyl]-2-methylpropanamide;hydrochloride
|
Synonyms |
SNAP 94847 HCl; SNAP 94847 hydrochloride; 1781934-47-1; SNAP 94847 (hydrochloride); N-[3-[1-[[4-(3,4-Difluorophenoxy)phenyl]methyl]-4-piperidinyl]-4-methylphenyl]-2-methylpropanamidehydrochloride; N-[3-[1-[[4-(3,4-difluorophenoxy)phenyl]methyl]piperidin-4-yl]-4-methylphenyl]-2-methylpropanamide;hydrochloride; N-[3-[1-[[4-(3,4-DIFLUOROPHENOXY)PHENYL]METHYL]-4-PIPERIDINYL]-4-METHYLPHENYL]-2-METHYLPROPANAMIDE HYDROCHLORIDE; SNAP-94847 hydrochloride?; SNAP-94847 HCl
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment, avoid exposure to moisture. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~250 mg/mL (~485.41 mM)
H2O : < 0.1 mg/mL |
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.08 mg/mL (4.04 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.08 mg/mL (4.04 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.08 mg/mL (4.04 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.9416 mL | 9.7082 mL | 19.4163 mL | |
5 mM | 0.3883 mL | 1.9416 mL | 3.8833 mL | |
10 mM | 0.1942 mL | 0.9708 mL | 1.9416 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.