yingweiwo

Silybin B

Alias: Silibinin B; 142797-34-0; UNII-853OHH1429; DTXSID30858697; 4H-1-BENZOPYRAN-4-ONE, 2-((2S,3S)-2,3-DIHYDRO-3-(4-HYDROXY-3-METHOXYPHENYL)-2-(HYDROXYMETHYL)-1,4-BENZODIOXIN-6-YL)-2,3-DIHYDRO-3,5,7-TRIHYDROXY-, (2R,3R)-; 4H-1-Benzopyran-4-one, 2-[(2S,3S)-2,3-dihydro-3-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-1,4-benzodioxin-6-yl]-2,3-dihydro-3,5,7-trihydroxy-, (2R,3R)-; DTXCID703580; SILYBIN B (CONSTITUENT OF MILK THISTLE);
Cat No.:V32892 Purity: ≥98%
Silybin B (Silibinin B) is a flavonolignan extracted from Silybum marianum and has anti-tumor activity.
Silybin B
Silybin B Chemical Structure CAS No.: 142797-34-0
Product category: New2
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
Other Sizes

Other Forms of Silybin B:

  • Silibinin
  • Isosilybin
  • Silybin (Silybin; Silibinin)
  • Silymarin
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Silybin B (Silibinin B) is a flavonolignan extracted from Silybum marianum and has anti-tumor activity. Silybin B is the most potent antifibrogenic and antioligomeric component of silymarin and is a promising candidate for active molecules against Alzheimer's disease (AD).
Biological Activity I Assay Protocols (From Reference)
Targets
Natural flavonolignan from Silybum marianum; anti-tumor
ln Vitro
Silybins A and B (4 and 5) are the major components in the active extract of milk thistle (silymarin) and have been linked previously to skin cancer prevention effects via anti-inflammatory, antioxidant, and immunomodulatory mechanisms (Katiyar, Citation2005). Our study results now reveal that all seven major compounds in silymarin show good EBV-EA inhibition activities. In our testing model, silychristins A and B (1 and 2) and isosilybins A and B (6 and 7) had better inhibition effects compared with β.-carotene, and silybins A and B (4 and 5) showed lower activity compared with the other flavonolignans in silymarin. Further in vivo. testing on mouse skin papillomas is ongoing. In conclusion, seven pure compounds silychristin A (1), silychristin B (2), silydianin (3), silybin A (4), Silybin B (5), isosilybin A (6), and isosilybin B (7) were isolated from an extract of milk thistle. Evaluation with an in vitro. EBV-EA activation assay showed that silychristin B (2) was the most active compound with 94.9% EBV-EA inhibition at 1000 mol ratio/TPA. As it also showed low cytotoxicity, 2 could be valuable as an antitumor promoter or as a lead compound for new cancer preventive drug development. [1]
Here, we combine biophysical (ThT assays, TEM and AFM imaging), biochemical (WB and ESI-MS), and computational (all-atom molecular dynamics) techniques to investigate the capacity of four optically pure components of the natural product silymarin (silybin A, Silybin B, 2,3-dehydrosilybin A, 2,3-dehydrosilybin B) to inhibit Aβ aggregation. Despite TEM analysis demonstrated that all the four investigated flavonoids prevent the formation of mature fibrils, ThT assays, WB and AFM investigations showed that only Silybin B was able to halt the growth of small-sized protofibrils thus promoting the formation of large, amorphous aggregates. Molecular dynamics (MD) simulations indicated that silybin B interacts mainly with the C-terminal hydrophobic segment 35MVGGVV40 of Aβ40. Consequently to silybin B binding, the peptide conformation remains predominantly unstructured along all the simulations. By contrast, silybin A interacts preferentially with the segments 17LVFF20 and 27NKGAII32 of Aβ40 which shows a high tendency to form bend, turn, and β-sheet conformation in and around these two domains. Both 2,3-dehydrosilybin enantiomers bind preferentially the segment 17LVFF20 but lead to the formation of different small-sized, ThT-positive Aβ aggregates. [2]
ln Vivo
Finally, in vivo studies in a transgenic Caenorhabditis elegans strain expressing human Aβ indicated that Silybin B is the most effective of the four compounds in counteracting Aβ proteotoxicity. This study underscores the pivotal role of stereochemistry in determining the neuroprotective potential of silybins and points to Silybin B as a promising lead compound for further development in anti-AD therapeutics [2].
Toxicity/Toxicokinetics
mouse LD50 oral >1600 mg/kg German Offenlegungsschrift Patent Document., #2423725
References

[1]. Cancer Preventive Agents. 7. Antitumor-Promoting Effects of Seven Active Flavonolignans from Milk Thistle (Silybum marianum.) on Epstein-Barr Virus Activation, Pharmaceutical Biology, 45:10, 735-738.

[2]. Inhibition of Aβ Amyloid Growth and Toxicity by Silybins: The Crucial Role of Stereochemistry. ACS Chem Neurosci. 2017 Aug 16;8(8):1767-1778.

Additional Infomation
Silybin B is a flavonolignan.
Silibinin B has been reported in Aspergillus iizukae, Anastatica hierochuntica, and other organisms with data available.
Silymarin is a mixture of flavonolignans isolated from the milk thistle plant Silybum marianum. Silymarin may act as an antioxidant, protecting hepatic cells from chemotherapy-related free radical damage. This agent may also promote the growth of new hepatic cells. (NCI04)
The major active component of silymarin flavonoids extracted from seeds of the MILK THISTLE, Silybum marianum; it is used in the treatment of HEPATITIS; LIVER CIRRHOSIS; and CHEMICAL AND DRUG INDUCED LIVER INJURY, and has antineoplastic activity; silybins A and B are diastereomers.
See also: Milk Thistle (part of); Silybin (annotation moved to).
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C25H22O10
Molecular Weight
482.43618
Exact Mass
482.121
Elemental Analysis
C, 62.24; H, 4.60; O, 33.16
CAS #
142797-34-0
Related CAS #
Silybin A;22888-70-6;Isosilybin;72581-71-6;Silybin;802918-57-6;Silymarin;65666-07-1
PubChem CID
1548994
Appearance
White to off-white solid powder
Density
1.5±0.1 g/cm3
Boiling Point
793.0±60.0 °C at 760 mmHg
Melting Point
158-160℃ (methanol water )
Flash Point
274.5±26.4 °C
Vapour Pressure
0.0±2.9 mmHg at 25°C
Index of Refraction
1.684
LogP
2.59
Hydrogen Bond Donor Count
5
Hydrogen Bond Acceptor Count
10
Rotatable Bond Count
4
Heavy Atom Count
35
Complexity
750
Defined Atom Stereocenter Count
4
SMILES
COC1=C(C=CC(=C1)[C@H]2[C@@H](OC3=C(O2)C=C(C=C3)[C@@H]4[C@H](C(=O)C5=C(C=C(C=C5O4)O)O)O)CO)O
InChi Key
SEBFKMXJBCUCAI-WAABAYLZSA-N
InChi Code
InChI=1S/C25H22O10/c1-32-17-6-11(2-4-14(17)28)24-20(10-26)33-16-5-3-12(7-18(16)34-24)25-23(31)22(30)21-15(29)8-13(27)9-19(21)35-25/h2-9,20,23-29,31H,10H2,1H3/t20-,23-,24-,25+/m0/s1
Chemical Name
(2R,3R)-3,5,7-trihydroxy-2-[(2S,3S)-3-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-6-yl]-2,3-dihydrochromen-4-one
Synonyms
Silibinin B; 142797-34-0; UNII-853OHH1429; DTXSID30858697; 4H-1-BENZOPYRAN-4-ONE, 2-((2S,3S)-2,3-DIHYDRO-3-(4-HYDROXY-3-METHOXYPHENYL)-2-(HYDROXYMETHYL)-1,4-BENZODIOXIN-6-YL)-2,3-DIHYDRO-3,5,7-TRIHYDROXY-, (2R,3R)-; 4H-1-Benzopyran-4-one, 2-[(2S,3S)-2,3-dihydro-3-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-1,4-benzodioxin-6-yl]-2,3-dihydro-3,5,7-trihydroxy-, (2R,3R)-; DTXCID703580; SILYBIN B (CONSTITUENT OF MILK THISTLE);
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~250 mg/mL (~518.20 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (4.31 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (4.31 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (4.31 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.0728 mL 10.3640 mL 20.7280 mL
5 mM 0.4146 mL 2.0728 mL 4.1456 mL
10 mM 0.2073 mL 1.0364 mL 2.0728 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
Glucocorticoids for Acute Drug Induced Liver Injury With Hyperbilirubinemia
CTID: NCT06922669
Phase: N/A
Status: Not yet recruiting
Date: 2025-04-10
Beneficial Effect of Silymarin in Ulcerative Colitis
CTID: NCT06213857
Phase: Phase 2
Status: Recruiting
Date: 2025-03-05
Silymarin for the Prevention of Atrial Fibrillation After Cardiac Surgery
CTID: NCT06114719
Phase: Phase 3
Status: Completed
Date: 2024-12-04
Impact of Silymarin Adjunct Therapy on Proteinuria in Type 2 Diabetic Patients on RAS Inhibitors
CTID: NCT06425705
Phase: Phase 2
Status: Completed
Date: 2024-05-22
Effect of Silymarin Against Methotrexate-induced Liver Injury in Rheumatic Diseases
CTID: NCT06277635
Phase: N/A
Status: Recruiting
Date: 2024-02-26
Contact Us