yingweiwo

SBI-0640756

Alias: SBI0640756; SBI 0640756; SBI-0640756
Cat No.:V14431 Purity: ≥98%
SBI-0640756 (SBI-756) is an eIF4G1 inhibitor that disrupts the eIF4F complex.
SBI-0640756
SBI-0640756 Chemical Structure CAS No.: 1821280-29-8
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
50mg
100mg
250mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
SBI-0640756 (SBI-756) is an eIF4G1 inhibitor that disrupts the eIF4F complex.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
SBI-0640756 (SBI-756) is an eIF4G1 inhibitor that is soluble in water. In parental and BRAFi-resistant melanomas, eIF4F complexes are disrupted by SBI-0640756 (SBI-756) (0-1 μM). SBI-0640756 (SBI-756) suppresses AKT, NF-κB, and AKT/mTORC1 activities in addition to having inhibitory effects on human melanoma lines [1].
ln Vivo
SBI-0640756 (SBI-756) (0.5 mg/kg, i.p.) 50% decreased tumor incidence and delayed carcinogenesis in the NrasQ61K/Ink4a–/– genetic model. When used in conjunction with a BRAF inhibitor, SBI-0640756 (SBI-756) (1 mg/kg, twice weekly, i.p.) efficiently suppresses the growth of existing tumors without turning immunodeficient mice bearing A375 tumors back into normal. of tumor development [1].
References

[1]. SBI-0640756 Attenuates the Growth of Clinically Unresponsive Melanomas by Disrupting the eIF4F Translation Initiation Complex. Cancer Res, 2015 Dec 15, 75(24):5211-8.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C23H14CLFN2O2
Molecular Weight
404.820868015289
Exact Mass
404.072
CAS #
1821280-29-8
PubChem CID
121241171
Appearance
Light yellow to yellow solid powder
LogP
4.1
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
4
Rotatable Bond Count
4
Heavy Atom Count
29
Complexity
701
Defined Atom Stereocenter Count
0
SMILES
ClC1C=CC2=C(C=1)C(C1C=CC=CC=1)=C(C(C=CC1C=NC=C(C=1)F)=O)C(N2)=O
InChi Key
VVWGPQZBDQVQRC-RMKNXTFCSA-N
InChi Code
InChI=1S/C23H14ClFN2O2/c24-16-7-8-19-18(11-16)21(15-4-2-1-3-5-15)22(23(29)27-19)20(28)9-6-14-10-17(25)13-26-12-14/h1-13H,(H,27,29)/b9-6+
Chemical Name
6-chloro-3-[(E)-3-(5-fluoropyridin-3-yl)prop-2-enoyl]-4-phenyl-1H-quinolin-2-one
Synonyms
SBI0640756; SBI 0640756; SBI-0640756
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ≥ 26 mg/mL (~64.23 mM)
Solubility (In Vivo)
Solubility in Formulation 1: 5 mg/mL (12.35 mM) in 50% PEG300 + 50% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: 2.5 mg/mL (6.18 mM) in 0.5% CMC-Na/saline water (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.4702 mL 12.3512 mL 24.7023 mL
5 mM 0.4940 mL 2.4702 mL 4.9405 mL
10 mM 0.2470 mL 1.2351 mL 2.4702 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us