SB290157 trifluoroacetate

Cat No.:V4614 Purity: ≥98%
SB290157 TFA, the trifluoroacetate salt ofSB-290157, is a novel, potent and selective antagonist of complement anaphylatoxin C3a receptor (IC50 = 200 nM) with the potential to be used in arthritis,diet-induced obesity, and metabolic dysfunction.
SB290157 trifluoroacetate Chemical Structure CAS No.: 1140525-25-2
Product category: Complement System
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

SB290157 TFA, the trifluoroacetate salt of SB-290157, is a novel, potent and selective antagonist of complement anaphylatoxin C3a receptor (IC50 = 200 nM) with the potential to be used in arthritis, diet-induced obesity, and metabolic dysfunction. C3a receptor is a 74 amino acid proinflammatory peptide that is a potent chemotaxin for eosinophils, macrophages and mast cells. The role of C3aRA in arthritis was investigated by injection of SB 290157 at concentrations of 10 and 30 mg/kg at 0 and 2 h. The antagonist was able to reduce joint swelling only at 3 h, and about 50% inhibition of joint swelling was observed with the concentration of 30 mg/kg. The C3 level was significantly decreased at 3 h compared with naïve mice showing complement consumption. Furthermore, the C3 activation was observed and increased corresponding to the graded concentration of anti-OVA pAb. The results also revealed that the C3aRA was able to reduce the expression of IL-1beta in synovial tissue. Taken together, the results suggested that C3aRA may be effective in the inhibition of arthritis. SB290157 is selective for C3aR over C5aR or other chemotactic GPCRs with an IC50 of 200 nM. It effectively blocks C3aR in humans, rat, guinea pig, and mouse. SB290157 was found to inhibit diet-induced obesity, and metabolic dysfunction.

Biological Activity I Assay Protocols (From Reference)
Targets

IC50: 200 nM (C3a)[1]

ln Vitro
At an IC50 of 200 nM, SB 290157 acts as a competitive antagonist of 125I-C3a radioligand binding to rat basophilic leukemia-2H3 cells expressing human C3aR (RBL-C3aR). With IC50 values of 27.7 and 28 nM, respectively, SB 290157 inhibits C3a-induced Ca2+ mobilization and C3a-induced C3aR internalization in RBL-C3aR cells and human neutrophils. Because it does not agonistically interact with the C5aR or six other chemotactic G protein-coupled receptors, SB 290157 exhibits selectivity for the C3aR. Additionally, RBL-2H3 cells expressing the mouse and guinea pig C3aRs are inhibited by SB 290157 when it comes to C3a-induced Ca2+ mobilization. It potently inhibits both the C3a-induced potentiation of the contractile response to field stimulation of the perfused rat caudal artery and the C3a-mediated ATP release from guinea pig platelets[1].
ln Vivo
In models of guinea pig LPS-induced airway neutrophilia and rat adjuvant-induced arthritis, SB 290157 reduces paw edema and inhibits neutrophil recruitment, respectively[1]. Only after three hours is the antagonist effective to diminish joint swelling; at 30 mg/kg, there is an observed 50% suppression of joint swelling. At three hours, the C3 level is much lower than in naive mice who exhibit complement consumption. Additionally, it is noted that the C3 activation increases in accordance with the anti-OVA pAb's graded concentration [2].
References
[1]. Ames RS, et al. Identification of a selective nonpeptide antagonist of the anaphylatoxin C3areceptor that demonstrates antiinflammatory activity in animal models. J Immunol. 2001 May 15;166(10):6341-8.
[2]. Hutamekalin P, et al. Effect of the C3a-receptor antagonist SB 290157 on anti-OVA polyclonalantibody-induced arthritis. J Pharmacol Sci. 2010;112(1):56-63
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C24H29F3N4O6
Molecular Weight
526.505476713181
CAS #
1140525-25-2
Related CAS #
1140525-25-2 (TFA);259218-28-5;
SMILES
FC(C(=O)O)(F)F.O(CC(N[C@H](C(=O)O)CCC/N=C(\N)/N)=O)CC(C1C=CC=CC=1)C1C=CC=CC=1
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~189.93 mM)
Ethanol : ~100 mg/mL (~189.93 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 5 mg/mL (9.50 mM) (saturation unknown) in 10% EtOH + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 50.0 mg/mL clear EtOH stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 5 mg/mL (9.50 mM) (saturation unknown) in 10% EtOH + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 50.0 mg/mL clear EtOH stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 5 mg/mL (9.50 mM) (saturation unknown) in 10% EtOH + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 50.0 mg/mL clear EtOH stock solution to 900 μL of corn oil and mix well.


Solubility in Formulation 4: ≥ 2.08 mg/mL (3.95 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL of PEG300 and mix evenly; then add 50 μL of Tween-80 to the above solution and mix evenly; then add 450 μL of normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 5: ≥ 2.08 mg/mL (3.95 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

Solubility in Formulation 6: ≥ 2.08 mg/mL (3.95 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.8993 mL 9.4965 mL 18.9930 mL
5 mM 0.3799 mL 1.8993 mL 3.7986 mL
10 mM 0.1899 mL 0.9496 mL 1.8993 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top