yingweiwo

(S)-2-Hydroxysuccinic acid

Alias: 97-67-6; L-Malic acid; L-(-)-Malic acid; (S)-2-hydroxysuccinic acid; (2S)-2-Hydroxybutanedioic acid; (S)-Malic acid; L(-)-Malic acid; (-)-Malic acid;
(S)-Malic acid ((S)-2-Hydroxysuccinic acid) is a naturally occurring dicarboxylic acid, a source of sweet and sour fruit, and is widely used as a food additive.
(S)-2-Hydroxysuccinic acid
(S)-2-Hydroxysuccinic acid Chemical Structure CAS No.: 97-67-6
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
(S)-Malic acid ((S)-2-Hydroxysuccinic acid) is a naturally occurring dicarboxylic acid, a source of sweet and sour fruit, and is widely used as a food additive.
Biological Activity I Assay Protocols (From Reference)
Targets
Endogenous Metabolite
ln Vitro
It has been demonstrated that ME is required for (S)-2-Hydroxysuccinic acid (L-malic acid) consumption in L. casei. Furthermore, deleting either the gene encoding the histidine kinase or the response regulator of the TC system resulted in the loss of the capacity to grow on (S)-2-Hydroxysuccinic acid, demonstrating that the homologous TC system regulates and is required for ME expression. MaeE expression is induced in the presence of (S)-2-Hydroxysuccinic acid and repressed by glucose, whereas TC system expression is induced by (S)-2-Hydroxysuccinic acid but not repressed by glucose[1].
Enzyme Assay
Lactobacillus casei can metabolize L-malic acid via malolactic enzyme (malolactic fermentation [MLF]) or malic enzyme (ME). Whereas utilization of L-malic acid via MLF does not support growth, the ME pathway enables L. casei to grow on L-malic acid. In this work, we have identified in the genomes of L. casei strains BL23 and ATCC 334 a cluster consisting of two diverging operons, maePE and maeKR, encoding a putative malate transporter (maeP), an ME (maeE), and a two-component (TC) system belonging to the citrate family (maeK and maeR). Homologous clusters were identified in Enterococcus faecalis, Streptococcus agalactiae, Streptococcus pyogenes, and Streptococcus uberis. Our results show that ME is essential for L-malic acid utilization in L. casei. Furthermore, deletion of either the gene encoding the histidine kinase or the response regulator of the TC system resulted in the loss of the ability to grow on L-malic acid, thus indicating that the cognate TC system regulates and is essential for the expression of ME. Transcriptional analyses showed that expression of maeE is induced in the presence of L-malic acid and repressed by glucose, whereas TC system expression was induced by L-malic acid and was not repressed by glucose. DNase I footprinting analysis showed that MaeR binds specifically to a set of direct repeats [5'-TTATT(A/T)AA-3'] in the mae promoter region. The location of the repeats strongly suggests that MaeR activates the expression of the diverging operons maePE and maeKR where the first one is also subjected to carbon catabolite repression[1].
References

[1]. Requirement of the Lactobacillus casei MaeKR two-component system for L-malic acid utilization via a malic enzyme pathway. Appl Environ Microbiol. 2010 Jan;76(1):84-95.

Additional Infomation
(S)-malic acid is an optically active form of malic acid having (S)-configuration. It has a role as a geroprotector. It is a conjugate acid of a (S)-malate(2-). It is an enantiomer of a (R)-malic acid.
L-Malic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
(2S)-2-Hydroxybutanedioic acid has been reported in Rehmannia glutinosa, Punica granatum, and other organisms with data available.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C4H6O5
Molecular Weight
134.0874
Exact Mass
134.021
Elemental Analysis
C, 35.83; H, 4.51; O, 59.66
CAS #
97-67-6
Related CAS #
26999-59-7
PubChem CID
222656
Appearance
White to off-white solid powder
Density
1.6±0.1 g/cm3
Boiling Point
306.4±27.0 °C at 760 mmHg
Melting Point
101-103 °C(lit.)
Flash Point
153.4±20.2 °C
Vapour Pressure
0.0±1.5 mmHg at 25°C
Index of Refraction
1.529
LogP
-1.26
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
5
Rotatable Bond Count
3
Heavy Atom Count
9
Complexity
129
Defined Atom Stereocenter Count
1
SMILES
C([C@@H](C(=O)O)O)C(=O)O
InChi Key
BJEPYKJPYRNKOW-REOHCLBHSA-N
InChi Code
InChI=1S/C4H6O5/c5-2(4(8)9)1-3(6)7/h2,5H,1H2,(H,6,7)(H,8,9)/t2-/m0/s1
Chemical Name
(2S)-2-hydroxybutanedioic acid
Synonyms
97-67-6; L-Malic acid; L-(-)-Malic acid; (S)-2-hydroxysuccinic acid; (2S)-2-Hydroxybutanedioic acid; (S)-Malic acid; L(-)-Malic acid; (-)-Malic acid;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~745.77 mM)
H2O : ~100 mg/mL (~745.77 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (18.64 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (18.64 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (18.64 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 7.4577 mL 37.2884 mL 74.5768 mL
5 mM 1.4915 mL 7.4577 mL 14.9154 mL
10 mM 0.7458 mL 3.7288 mL 7.4577 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us