yingweiwo

Rhodiosin

Cat No.:V29020 Purity: ≥98%
Rhodiosin is a dual (bifunctional) inhibitor of CYP2D6 and AChE, which can be extracted from the roots of Rhodiola rosea.
Rhodiosin
Rhodiosin Chemical Structure CAS No.: 86831-54-1
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Rhodiosin is a dual (bifunctional) inhibitor of CYP2D6 and AChE, which can be extracted from the roots of Rhodiola rosea. The IC50 for CYP2D6 is 0.761 μM and the Ki is 0.769 μM. Rhodiosin has antioxidant and neuro-protective (neuro-protection) activities and can regulate the HIF-1α signaling pathway to protect the central nervous system.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
By altering the feedback of the HIF-1α signal, rodiosin (10 μM, 24 h) modifies the protective effect on the central nervous system [3].
ln Vivo
Rhodiola rosea (100 mg/kg, injury, once daily, for 10 consecutive days) can lessen radiation-induced neck damage and the amount of MDA in the irradiated C57BL mice model [4].
Cell Assay
Western Blot Analysis [3]
Cell Types: BV-2 and PC-12
Tested Concentrations: 10 μM
Incubation Duration: 24 h
Experimental Results: HIF-1α degradation in BV-2 and PC-12 cells was diminished under normoxic conditions, and under hypoxic conditions HIF-1α protein expression was enhanced in PC-12 cells.
Animal Protocol
Animal/Disease Models: Irradiated C57BL mouse model [4]
Doses: 100 mg/kg, one time/day for 10 days.
Route of Administration: po (oral gavage).
Experimental Results: Radiation caused a decrease in MDA content in the liver.
References

[1]. Two potent cytochrome P450 2D6 inhibitors found in Rhodiola rosea. Pharmazie. 2013 Dec;68(12):974-6.

[2]. Molecular interaction studies of acetylcholinesterase with potential acetylcholinesterase inhibitors from the root of Rhodiola crenulata using molecular docking and isothermal titration calorimetry methods. Int J Biol Macromol. 2017 Nov;104(Pt A):527-532.

[3]. Salidroside orchestrates metabolic reprogramming by regulating the Hif-1α signalling pathway in acute mountain sickness. Pharm Biol. 2021 Dec;59(1):1540-1550.

[4]. Rhodiosin, an antioxidant flavonol glycoside from Rhodiola rosea. Journal of the Korean Society for Applied Biological Chemistry, 2009, 52: 486-492.

Additional Infomation
Rhodiosin has been reported in Rhodiola crenulata, Rhodiola sachalinensis, and Rhodiola rosea with data available.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C27H30O16
Molecular Weight
610.5175
Exact Mass
610.153
CAS #
86831-54-1
PubChem CID
76959646
Appearance
Light yellow to green yellow solid powder
Density
1.8±0.1 g/cm3
Boiling Point
994.3±65.0 °C at 760 mmHg
Flash Point
329.1±27.8 °C
Vapour Pressure
0.0±0.3 mmHg at 25°C
Index of Refraction
1.765
LogP
-2.25
Hydrogen Bond Donor Count
10
Hydrogen Bond Acceptor Count
16
Rotatable Bond Count
6
Heavy Atom Count
43
Complexity
1020
Defined Atom Stereocenter Count
10
SMILES
C[C@H]1[C@@H]([C@H]([C@H]([C@@H](O1)OC2=C(C3=C(C(=C2)O)C(=O)C(=C(O3)C4=CC=C(C=C4)O)O)O)O)O[C@H]5[C@@H]([C@H]([C@@H]([C@H](O5)CO)O)O)O)O
InChi Key
WXBBQBYCUTXTJQ-ULMXTSOFSA-N
InChi Code
InChI=1S/C27H30O16/c1-8-15(31)25(43-26-21(37)19(35)16(32)13(7-28)41-26)22(38)27(39-8)40-12-6-11(30)14-18(34)20(36)23(42-24(14)17(12)33)9-2-4-10(29)5-3-9/h2-6,8,13,15-16,19,21-22,25-33,35-38H,7H2,1H3/t8-,13+,15-,16+,19-,21+,22+,25+,26-,27-/m0/s1
Chemical Name
7-[(2S,3R,4R,5S,6S)-3,5-dihydroxy-6-methyl-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-3,5,8-trihydroxy-2-(4-hydroxyphenyl)chromen-4-one
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: This product requires protection from light (avoid light exposure) during transportation and storage.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~33.33 mg/mL (~54.59 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (4.09 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (4.09 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.6379 mL 8.1897 mL 16.3795 mL
5 mM 0.3276 mL 1.6379 mL 3.2759 mL
10 mM 0.1638 mL 0.8190 mL 1.6379 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us