yingweiwo

Pseudoginsenoside F11

Cat No.:V29584 Purity: ≥98%
Pseudoginsenoside F11 (Ginsenoside A1) is a component of American ginseng, which can resist the loss of learning and memory ability induced by hyoscyamine, morphine, and methamphetamine in mice.
Pseudoginsenoside F11
Pseudoginsenoside F11 Chemical Structure CAS No.: 69884-00-0
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Pseudoginsenoside F11 (Ginsenoside A1) is a component of American ginseng, which can resist the loss of learning and memory ability induced by hyoscyamine, morphine, and methamphetamine in mice.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
Biochemical investigations reveal that ginsenoside F11 (ginsenoside A1) can prevent the binding of diprenorphine (DIP) with an IC50 of 6.1 μM, and lower the binding potency of morphine in Chinese hamster ovary (CHO)-μ cells [1].
ln Vivo
An in vivo model of acute renal failure caused by cisplatin was used. The pretreatment with ginsenoside Pseudoginsenoside F11 (ginsenoside A1) alleviated histopathological damage and decreased blood urea nitrogen and creatinine levels elevated by cisplatin [1]. Using in vivo microdialysis, we examined the impact of ginsenoside F11 (ginsenoside A1) on the emergence of morphine-induced behavioral sensitization and alterations in glutamate levels in the medial prefrontal cortex (mPFC) of freely moving mice. According to the findings, ginsenoside Pseudoginsenoside F11 (ginsenoside A1) can counteract the loss of glutamate in mPFC and the emergence of morphine-induced behavioral sensitization [3].
References

[1]. The pseudoginsenoside F11 ameliorates cisplatin-induced nephrotoxicity without compromising its anti-tumor activity in vivo. Scientific Reports [2014, 4:4986].

[2]. Pseudoginsenoside-F11 attenuates morphine-induced signalling in Chinese hamster ovary-μ cells. Neuroreport, 25 May 2001 - Volume 12 - Issue 7 - pp 1453-1456.

[3]. Pseudoginsenoside-F11 decreases morphine-induced behavioral sensitization and extracellular glutamate levels in the medial prefrontal cortex in mice. Pharmacology Biochemistry and Behavior Volume 86, Issue 4, April 2007, Pages 660–666.

Additional Infomation
Ginsenoside A1 has been reported in Panax notoginseng, Panax ginseng, and Panax quinquefolius with data available.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C42H72O14
Molecular Weight
801.0127
Exact Mass
800.492
CAS #
69884-00-0
PubChem CID
3841360
Appearance
White to light yellow solid powder
Density
1.3±0.1 g/cm3
Boiling Point
885.3±65.0 °C at 760 mmHg
Flash Point
489.2±34.3 °C
Vapour Pressure
0.0±0.6 mmHg at 25°C
Index of Refraction
1.599
LogP
5.27
Hydrogen Bond Donor Count
9
Hydrogen Bond Acceptor Count
14
Rotatable Bond Count
7
Heavy Atom Count
56
Complexity
1430
Defined Atom Stereocenter Count
0
InChi Key
JBGYSAVRIDZNKA-UHFFFAOYSA-N
InChi Code
InChI=1S/C42H72O14/c1-19-28(46)30(48)32(50)35(52-19)55-33-31(49)29(47)23(18-43)54-36(33)53-22-17-41(8)24(39(6)13-11-25(45)37(2,3)34(22)39)16-21(44)27-20(10-14-40(27,41)7)42(9)15-12-26(56-42)38(4,5)51/h19-36,43-51H,10-18H2,1-9H3
Chemical Name
2-[2-[[3,12-dihydroxy-17-[5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-6-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy-6-methyloxane-3,4,5-triol
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~50 mg/mL (~62.42 mM)
H2O : ~0.67 mg/mL (~0.84 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (3.12 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (3.12 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (3.12 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.2484 mL 6.2421 mL 12.4842 mL
5 mM 0.2497 mL 1.2484 mL 2.4968 mL
10 mM 0.1248 mL 0.6242 mL 1.2484 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us