Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
50mg |
|
||
100mg |
|
||
Other Sizes |
|
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
Renal Via the kidneys, primarily hydrolyzed. Metabolism / Metabolites This drug his hydrolyzed in both the plasma and the liver by plasma esterases. |
---|---|
Additional Infomation |
Propoxycaine is a benzoate ester.
Propoxycaine is a local anesthetic of the ester type that has a rapid onset of action and a longer duration of action than procaine hydrochloride. This drug was removed from the US market in 1996. Although no longer available in the United States, this medication was used in combination with procaine to aid in anesthesia during dental procedures. Used in combination with procaine, it was the only dental local anesthetic available in cartridge form. Propoxycaine is a para-aminobenzoic acid ester with local anesthetic activity. Propoxycaine binds to and inhibits voltage-gated sodium channels, thereby inhibiting the ionic flux required for the initiation and conduction of impulses. This results in a loss of sensation. A local anesthetic of the ester type that has a rapid onset of action and a longer duration of action than procaine hydrochloride. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1017) Drug Indication Propoxycaine is a local anesthetic medication. It was used beginning in the 1950s during dental procedures. It has been combined with procaine to accelerate its onset of action and provide longer-lasting anesthetic effect. It was produced for use when amide local anesthetics were contraindicated due to allergy or when several amide anesthetics were unsuccessful. Mechanism of Action Propoxycaine is a para-aminobenzoic acid ester with local anesthetic activity. Propoxycaine binds to and blocks voltage-gated sodium channels, thereby inhibiting the ionic flux essential for the conduction of nerve impulses. This results in a loss of sensation. In one study, propoxycaine hydrochloride increased annular lipid fluidity in cell lipid bilayers and had a greater fluidizing effect on the inner monolayer than that of the outer monolayer. This may further confirm its role in modulating neural impulses. Pharmacodynamics Propoxycaine is a local anesthetic which acts to decrease nerve impulses and therefore pain sensation during dental procedures. |
Molecular Formula |
C16H26N2O3.HCL
|
---|---|
Molecular Weight |
330.85018
|
Exact Mass |
330.171
|
CAS # |
550-83-4
|
PubChem CID |
6843
|
Appearance |
White to light brown solid powder
|
Boiling Point |
434.4ºC at 760mmHg
|
Melting Point |
146-151
|
Flash Point |
216.5ºC
|
LogP |
3.939
|
Hydrogen Bond Donor Count |
1
|
Hydrogen Bond Acceptor Count |
5
|
Rotatable Bond Count |
10
|
Heavy Atom Count |
21
|
Complexity |
295
|
Defined Atom Stereocenter Count |
0
|
InChi Key |
CAJIGINSTLKQMM-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C16H26N2O3/c1-4-10-20-15-12-13(17)7-8-14(15)16(19)21-11-9-18(5-2)6-3/h7-8,12H,4-6,9-11,17H2,1-3H3
|
Chemical Name |
2-(diethylamino)ethyl 4-amino-2-propoxybenzoate
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment, avoid exposure to moisture. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
H2O : ~100 mg/mL (~302.25 mM)
DMSO : ~50 mg/mL (~151.13 mM) |
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.08 mg/mL (6.29 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.08 mg/mL (6.29 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.08 mg/mL (6.29 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. Solubility in Formulation 4: ≥ 100 mg/mL (302.25 mM) (saturation unknown) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 3.0225 mL | 15.1126 mL | 30.2252 mL | |
5 mM | 0.6045 mL | 3.0225 mL | 6.0450 mL | |
10 mM | 0.3023 mL | 1.5113 mL | 3.0225 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.