Size | Price | Stock | Qty |
---|---|---|---|
100mg |
|
||
Other Sizes |
|
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
The bioavailability of 2g of propacetamol is similar to the bioavailability found in 1 g of intravenous paracetamol. Peak plasma concentration is obtained as and from the end of infusion. Pharmacokinetic analysis with intravenous propacetamol showed a significantly higher and earlier maximum plasma concentration than orally administered paracetamol. The Cmax, Tmax and AUC are 12.72 mcg/ml, 0.25 h and 25.5 mcg.h/ml. After infusion with propacetamol, significant concentrations of paracetamol are observed in cerebrospinal fluid. The metabolites of propacetamol are mainly excreted in the urine. From the elimination rate, 90% of the administered dose is excreted in 24 hours mainly as glucuronide and sulfate conjugates. Less than 5% is eliminated as unchanged paracetamol. The volume of distribution of propacetamol is 1.29 l/kg. The clearance rate of propacetamol is 0.28 l.h/kg. Metabolism / Metabolites After administration, propacetamol is completely converted by plasma esterases into N, N-diethylglycine and paracetamol. The latest is the active metabolite. It is reported that the active metabolite of propacetamol can be transformed to N-acetil-p-benzoquinone imine by CYP2E1 which is a hepatotoxic metabolite. Biological Half-Life The half-life of propacetamol is of 3.6 h. |
---|---|
Toxicity/Toxicokinetics |
Protein Binding
Propacetamol is very rapidly converted into paracetamol and this later component tends to present a very negligible binding to plasma proteins. |
Additional Infomation |
Propacetamol is an alpha-amino acid ester.
Propacetamol is a non-opioid analgesic devoid of the major contraindications. It is a derivative of [acetaminophen], or paracetamol, with the molecular formula glycine, N, N-diethyl-,4-(acetylamino)phenyl ester. Propacetamol is a parenteral formulation of paracetamol and thus, it is a prodrug that is completely hydrolyzed to paracetamol. It is not available in the United States but this prodrug has been widely used in other countries such as France since 1985. Propacetamol is a water-soluble para-aminophenol derivative and ester prodrug of acetaminophen in which acetaminophen is bound to the carboxylic acid diethylglycine, with analgesic and antipyretic activities. Upon intravenous administration, propacetamol is hydrolyzed by plasma esterases into its active form acetaminophen. Although the exact mechanism of action has yet to be fully elucidated despite its widespread use, acetaminophen enters the central nervous system and acts centrally. This agent binds to cyclooxygenase (COX) and prevents the metabolism of arachidonic acid to prostaglandin. A reduction in prostaglandin formation relieves pain and reduces fever. Acetaminophen may also act centrally on cannabinoid receptors and on N-methyl-D-aspartate (NMDA) receptors. Drug Indication Propacetamol is a paracetamol prodrug of intravenous administration used to control fever and pain of perioperative period in multimodal analgesia therapy. Mechanism of Action As propacetamol is a prodrug, its mechanism of action is directly linked to the activity of paracetamol. The mechanism of action of paracetamol is described by the inhibition of prostaglandin synthesis. This inhibition is attained by inhibition of COX-1 and COX-2 in an environment where arachidonic acid and peroxides are kept low. It is considered that paracetamol presents a very complex mechanism of action involving effects in the peripheral system, described by direct COX inhibition; the central system, characterized by inhibition of COX, serotonergic descending neuronal pathway, L-arginine/NO pathway and cannabinoid system; and a redox mechanism. In the brain and spinal cord, paracetamol can combine with arachidonic acid to form N-arachidonoylphenolamine. This metabolite is an activator of capsaicin receptor (TRPV1) and cannabinoid CB1. |
Molecular Formula |
C14H20N2O3
|
---|---|
Molecular Weight |
264.3202
|
Exact Mass |
264.147
|
CAS # |
66532-85-2
|
Related CAS # |
Propacetamol hydrochloride;66532-86-3
|
PubChem CID |
68865
|
Appearance |
White to off-white solid powder
|
Density |
1.132 g/cm3
|
Boiling Point |
434.5ºC at 760 mmHg
|
Flash Point |
216.6ºC
|
Index of Refraction |
1.547
|
LogP |
1.965
|
Hydrogen Bond Donor Count |
1
|
Hydrogen Bond Acceptor Count |
4
|
Rotatable Bond Count |
7
|
Heavy Atom Count |
19
|
Complexity |
295
|
Defined Atom Stereocenter Count |
0
|
SMILES |
CCN(CC(OC1C=CC(NC(=O)C)=CC=1)=O)CC
|
InChi Key |
QTGAJCQTLIRCFL-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C14H20N2O3/c1-4-16(5-2)10-14(18)19-13-8-6-12(7-9-13)15-11(3)17/h6-9H,4-5,10H2,1-3H3,(H,15,17)
|
Chemical Name |
(4-acetamidophenyl) 2-(diethylamino)acetate
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
H2O : ~100 mg/mL (~378.33 mM)
DMSO : ~33.33 mg/mL (~126.10 mM) |
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.5 mg/mL (9.46 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly. Solubility in Formulation 2: ≥ 2.08 mg/mL (7.87 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.08 mg/mL (7.87 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. Solubility in Formulation 4: 100 mg/mL (378.33 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 3.7833 mL | 18.9165 mL | 37.8329 mL | |
5 mM | 0.7567 mL | 3.7833 mL | 7.5666 mL | |
10 mM | 0.3783 mL | 1.8916 mL | 3.7833 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.