yingweiwo

1,3-Dihydroxyacetone

Cat No.:V83069 Purity: ≥98%
1,3-Dihydroxyacetone (DHA), the main active ingredient in tanning products and an important precursor for the synthesis of various fine chemicals, can be produced on an industrial scale through microbial fermentation on Gluconobacter oxydans.
1,3-Dihydroxyacetone
1,3-Dihydroxyacetone Chemical Structure CAS No.: 96-26-4
Product category: Plants
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
1,3-Dihydroxyacetone (DHA), the main active ingredient in tanning products and an important precursor for the synthesis of various fine chemicals, can be produced on an industrial scale through microbial fermentation on Gluconobacter oxydans.
Biological Activity I Assay Protocols (From Reference)
Targets
Microbial Metabolite
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
The present study investigated the fate of dihydroxyacetone (DHA) in an in vitro absorption study. In these studies, human ... skin penetration and absorption were determined over 24 or 72 hr in flow-through diffusion cells. ... For DHA, penetration studies found approximately 22% of the applied dose remaining in the skin (in both the stratum corneum and viable tissue) as a reservoir after 24 hr. Little of the DHA that penetrates into skin is actually available to become systemically absorbed.
Metabolism / Metabolites
Several bacteria use glycerol dehydrogenase to transform glycerol into dihydroxyacetone (DHA). DHA is subsequently converted into DHA phosphate (DHA-P) by an ATP- or phosphoenolpyruvate (PEP)-dependent DHA kinase. Listeria innocua possesses two potential PEP-dependent Dha kinases. One is encoded by 3 of the 11 genes forming the glycerol (gol) operon. This operon also contains golD (lin0362), which codes for a new type of DHA-forming NAD(+)-dependent glycerol dehydrogenase. The subsequent metabolism of DHA requires its phosphorylation via the PEP:sugar phosphotransferase system components enzyme I, HPr, and EIIA(DHA)-2 (Lin0369). P-EIIA(DHA)-2 transfers its phosphoryl group to DhaL-2, which phosphorylates DHA bound to DhaK-2. The resulting Dha-P is probably metabolized mainly via the pentose phosphate pathway, because two genes of the gol operon encode proteins resembling transketolases and transaldolases. In addition, purified Lin0363 and Lin0364 exhibit ribose-5-P isomerase (RipB) and triosephosphate isomerase activities, respectively. The latter enzyme converts part of the DHA-P into glyceraldehyde-3-P, which, together with DHA-P, is metabolized via gluconeogenesis to form fructose-6-P. Together with another glyceraldehyde-3-P molecule, the transketolase transforms fructose-6-P into intermediates of the pentose phosphate pathway. The gol operon is preceded by golR, transcribed in the opposite orientation and encoding a DeoR-type repressor. Its inactivation causes the constitutive but glucose-repressible expression of the entire gol operon, including the last gene, encoding a pediocin immunity-like (PedB-like) protein. Its elevated level of synthesis in the golR mutant causes slightly increased immunity against pediocin PA-1 compared to the wild-type strain or a pedB-like deletion mutant.
Toxicity/Toxicokinetics
Interactions
... Consumption of dihydroxyacetone and pyruvate (DHP) increases muscle extraction of glucose in normal men. To test the hypothesis that these three-carbon compounds would improve glycemic control in diabetes the effect of DHP on plasma glucose concentration, turnover, recycling, and tolerance in 7 women with noninsulin-dependent diabetes /was evaluated/. The subjects consumed a 1,500-calorie diet (55% carbohydrate, 30% fat, 15% protein), randomly containing 13% of the calories as DHP (1/1) or Polycose (placebo; PL), as a drink three times daily for 7 days. On the 8th day, primed continuous infusions of [6-(3)H]-glucose and U-(14)C-glucose were begun at 05.00 hr, and at 09.00 hr a 3-hr glucose tolerance test (75 g glucola) was performed. Two weeks later the subjects repeated the study with the other diet. The fasting plasma glucose level decreased by 14% with DHP (DHP = 8.0 + or - 0.9 mmol/L; PL = 9.3 + or - 1.0 mmol/L, p less than 0.05) which accounted for lower postoral glucose glycemia (DHP = 13.1 + or - 0.8 mmol/L, PL = 14.7 + or - 0.8 mmol/L, p< 0.05). 6-(3)H-glucose turnover (DHP = 1.50 + or - 0.19 mg/kg-L/min, PL = 1.77 + or - 0.21 mmg/kg-L/min, p less than 0.05) and glucose recycling, the difference in 6-(3)H-glucose and U-(14)C-glucose turnover rates, decreased with DHP (DHP = 0.25 + or - 0.07 mg/kg-L/min, PL = 0.54 + or - 0.10 mg/kg-L/min, p< 0.05). Fasting and postoral glucose, plasma insulin, glucagon, and C peptide levels were unaffected by DHP. /Mixture of dihydroxyacetone and pyruvate/.
Dihydroxyacetone (DHA) effectively antagonized the lethal effect of cyanide in mice and rabbits, particularly if administered in combination with thiosulfate. Oral DHA (2 and 4 g/kg) given to mice 10 min before injection (ip) of cyanide increased the LD50 values of cyanide from 5.7 mg/kg to 12 and 17.6 mg/kg, respectively. DHA prevented cyanide-induced lethality most effectively, if given orally 10-15 min before injection of cyanide. A combination of pretreatment with oral DHA (4 g/kg) and post-treatment with sodium thiosulfate (1 g/kg) increased the LD50 of cyanide by a factor of 9.9. Furthermore, DHA given intravenously to rabbits 5 min after subcutaneous injection of cyanide increased the LD50 of cyanide from 6 mg/kg to more than 11 mg/kg, while thiosulfate (1 g/kg) given intravenously 5 min after cyanide injection increased the LD50 of cyanide only to 8.5 mg/kg. DHA also prevented the convulsions that occurred after cyanide intoxication.
Potassium cyanide (CN) intoxication in mice was found to be effectively antagonized by dihydroxyacetone (DHA), particularly if administered in combination with another CN antidote, sodium thiosulfate. Cyanide-induced convulsions were also prevented by DHA treatment, either alone or in combination with thiosulfate. Injection (ip) of DHA (2 g/kg) 2 min after or 10 min before CN (sc) increased LD50 values of CN (8.7 mg/kg) by factors of 2.1 and 3.0, respectively. Treatment with a combination of DHA and thiosulfate after CN increased the LD50 by a factor of 2.4. Pretreatment with a combination of DHA and thiosulfate (1 g/kg) increased the LD50 of CN to 83 mg/kg. Administration of alpha-ketoglutarate (2.0 g/kg), but not pyruvate, 2 min after CN increased the LD50 of CN by a factor of 1.6. Brain, heart and liver cytochrome oxidase activities were also measured following in vivo CN treatment with and without DHA. Pretreatment with DHA prevented the inhibition of cytochrome oxidase activity by CN and treatment with DHA after CN accelerated the recovery of cytochrome oxidase activity, especially in brain and heart homogenates ...
References

[1]. Novel Process for 1,3-Dihydroxyacetone Production from Glycerol. 1. Technological Feasibility Study and Process Design. Ind. Eng. Chem. Res. 2012, 51, 9, 3715–3721.

[2]. Optimization of 1,3-dihydroxyacetone production from crude glycerol by immobilized Gluconobacter oxydans MTCC 904. Bioresour Technol. 2016 Sep;216:1058-65.

Additional Infomation
Dihydroxyacetone is a ketotriose consisting of acetone bearing hydroxy substituents at positions 1 and 3. The simplest member of the class of ketoses and the parent of the class of glycerones. It has a role as a metabolite, an antifungal agent, a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a ketotriose and a primary alpha-hydroxy ketone.
Dihydroxyacetone is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Dihydroxyacetone has been reported in Arabidopsis thaliana, Homo sapiens, and other organisms with data available.
Dihydroxyacetone is a metabolite found in or produced by Saccharomyces cerevisiae.
A ketotriose compound. Its addition to blood preservation solutions results in better maintenance of 2,3-diphosphoglycerate levels during storage. It is readily phosphorylated to dihydroxyacetone phosphate by triokinase in erythrocytes. In combination with naphthoquinones it acts as a sunscreening agent.
Mechanism of Action
...The toxicity of dihydroxyacetone appears to be due to its intracellular conversion to an aldehyde compound, presumably methylglyoxal, since the glyoxalase mutant becomes sensitive to dihydroxyacetone. Based on information that gldA is preceded in an operon by the ptsA homolog and talC gene encoding fructose 6-phosphate aldolase, this study proposes that the primary role of gldA is to remove toxic dihydroxyacetone by converting it into glycerol.
Therapeutic Uses
/The objective of this study was/ to evaluate the properties of dihydroxyacetone (DHA) in a new formulation for the treatment of vitiligo on exposed areas. ... Ten patients suffering from vitiligo affecting the face and/or hands /were treated/ with a newly introduced, commercially available self-bronzing cream containing DHA 5%. DHA was applied every second day. The characteristic pigmentation showed very satisfactory cosmetic results in 8 out of 10 patients after 2 weeks of treatment. The new DHA formulation is a practical and well-accepted treatment modality.
/EXPL THER/ Dihydroxyacetone (DHA), a three-carbon sugar, is the browning ingredient in commercial sunless tanning formulations. ... In this work, the in vitro antifungal activity of dihydroxyacetone was tested against causative agents of dermatomycosis, more specifically against dermatophytes and Candida spp. The antifungal activity was determined by the broth microdilution method according to the Clinical and Laboratory Standards Institute guidelines for yeasts and filamentous fungi. The data obtained show that the fungicidal activity varied from 1.6 to 50 mg/mL. DHA seems to be a promising substance for the treatment of dermatomycosis because it has antifungal properties at the same concentration used in artificial suntan lotions. Therefore, it is a potential low-toxicity antifungal agent that may be used topically because of its penetration into the corneal layers of the skin.
During seven months of a clinical trial in spring, summer, and fall, 30 UVA/B/Soret band-photosensitive patients used sequential topical applications of dihydroxyacetone (DHA) followed by naphthoquinone only at bedtime and received excellent photoprotection without a single therapeutic failure or loss of any patient to follow-up. Eighteen of the 30 patients extended the limits of their photoprotection repeatedly over a seven-month period to tolerate without sunburns six to eight hrs of midday sunlight under all kinds of occupational and recreational environmental conditions ...
/EXPTL THER/ ... the protection with topical application of dihydroxyacetone (DHA) against solar UV-induced skin carcinogenesis in lightly pigmented hairless hr/hr C3H/Tif mice /was investigated/. ... Three groups of mice were UV-exposed four times a wk to a dose-equivalent of four times the standard erythema dose (SED), without or with application of 5 or 20% DHA only twice a week. Similarly, three groups of mice were treated with DHA and irradiated with a high UV dose (8 standard erythema dose), simulating a skin burn. Two groups (controls) were not irradiated, but either left untreated or treated with 20% DHA alone. The UV-induced skin pigmentation by melanogenesis could easily be distinguished from DHA-induced browning and was measured by a non-invasive, semi-quantitative method. Application of 20% DHA reduced by 63% the pigmentation produced by 4 standard erythema dose, however, only by 28% the pigmentation produced by 8 standard erythema dose. Furthermore, topical application of 20% DHA significantly delayed the time to appearance of the first tumor >or=1mm (P=0.0012) and the time to appearance of the third tumor (P=2 x 10(-6)) in mice irradiated with 4 standard erythema dose. However, 20% DHA did not delay tumor development in mice irradiated with 8 standard erythema dose. Application of 5% DHA did not influence pigmentation or photocarcinogenesis.
/EXPTL THER/ ... Consumption of dihydroxyacetone and pyruvate (DHP) increases muscle extraction of glucose in normal men. To test the hypothesis that these three-carbon compounds would improve glycemic control in diabetes the effect of DHP on plasma glucose concentration, turnover, recycling, and tolerance in 7 women with noninsulin-dependent diabetes /was evaluated/. The subjects consumed a 1,500-calorie diet (55% carbohydrate, 30% fat, 15% protein), randomly containing 13% of the calories as DHP (1/1) or Polycose (placebo; PL), as a drink three times daily for 7 days. On the 8th day, primed continuous infusions of [6-(3)H]-glucose and [U-(14)C]-glucose were begun at 05.00 hr, and at 09.00 hr a 3-hr glucose tolerance test (75 g glucola) was performed. Two weeks later the subjects repeated the study with the other diet. The fasting plasma glucose level decreased by 14% with DHP (DHP = 8.0 + or - 0.9 mmol/L; PL = 9.3 + or - 1.0 mmol/L, p less than 0.05) which accounted for lower postoral glucose glycemia (DHP = 13.1 + or - 0.8 mmol/L, PL = 14.7 + or - 0.8 mmol/L, p less than 0.05). [6-(3)H]-glucose turnover (DHP = 1.50 + or - 0.19 mg/kg-L/min, PL = 1.77 + or - 0.21 mmg/kg-L/min, p less than 0.05) and glucose recycling, the difference in [6-(3)H]-glucose and [U-(14)C]-glucose turnover rates, decreased with DHP (DHP = 0.25 + or - 0.07 mg/kg-L/min, PL = 0.54 + or - 0.10 mg/kg-L/min, p less than 0.05). Fasting and postoral glucose, plasma insulin, glucagon, and C peptide levels were unaffected by DHP. /Mixture of dihydroxyacetone and pyruvate/.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C3H6O3
Molecular Weight
90.08
Exact Mass
90.031
CAS #
96-26-4
Related CAS #
26776-70-5
PubChem CID
670
Appearance
White to off-white solid
Density
1.3±0.1 g/cm3
Boiling Point
213.7±15.0 °C at 760 mmHg
Melting Point
75-80 °C
Flash Point
97.3±16.9 °C
Vapour Pressure
0.0±0.9 mmHg at 25°C
Index of Refraction
1.455
LogP
-0.78
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
3
Rotatable Bond Count
2
Heavy Atom Count
6
Complexity
44
Defined Atom Stereocenter Count
0
SMILES
O=C(CO)CO
InChi Key
RXKJFZQQPQGTFL-UHFFFAOYSA-N
InChi Code
InChI=1S/C3H6O3/c4-1-3(6)2-5/h4-5H,1-2H2
Chemical Name
1,3-dihydroxypropan-2-one
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO :~100 mg/mL (~1110.12 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (27.75 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (27.75 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (27.75 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 11.1012 mL 55.5062 mL 111.0124 mL
5 mM 2.2202 mL 11.1012 mL 22.2025 mL
10 mM 1.1101 mL 5.5506 mL 11.1012 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us