yingweiwo

Flavonol

Cat No.:V72356 Purity: ≥98%
Flavonol is an endogenously produced metabolite.
Flavonol
Flavonol Chemical Structure CAS No.: 577-85-5
Product category: Endogenous Metabolite
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
100mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Flavonol is an endogenously produced metabolite.
Biological Activity I Assay Protocols (From Reference)
ADME/Pharmacokinetics
Metabolism / Metabolites
It has been reported that flavonoids efficiently protect against peroxynitrite toxicity. Two pharmacophores have been identified in flavonoids, namely the catechol group in ring B and the hydroxyl (OH) group at the 3-position. In this study, this structure-activity relationship was further examined. It was found that catechol (1,2-dihydroxybenzene) is a potent peroxynitrite scavenger, whereas phenol (hydroxybenzene) is not. Of the flavonols tested without a catechol group in ring B, kaempferol (OH groups at positions 3,5,7,4') and galangin (OH groups at positions 3,5,7) are also potent scavengers, whereas apigenin (OH groups at positions 5,7,4') and chrysin (OH groups at positions 5,7) are not. This confirms the importance of the OH group at the 3-position. However, the synthetic flavonol TUM 9761 and 3-hydroxyflavone (OH group only at position 3) are poor scavengers. Based on these results, the structure-activity relationship on the peroxynitrite scavenging activity of flavonols was refined. The catechol in ring B remains important. Also the 3-OH group remains important, but the activity of this pharmacophore is influenced by the substituents at position 5 and at position 7.
3-Hydroxyflavone has known human metabolites that include (2S,3S,4S,5R)-3,4,5-Trihydroxy-6-(4-oxo-2-phenylchromen-3-yl)oxyoxane-2-carboxylic acid.
Toxicity/Toxicokinetics
Interactions
... Male Fischer 344 rats were fed diets supplemented with 0.1% (wt/wt) of /3-hydroxyflavone/ ... and after 2 wk they were treated twice (1 wk apart) with azoxymethane (AOM) (15 mg/kg sc); the dietary treatment continued until sacrifice, 7 wk after the first injection with AOM. ... 3-OH-flavone slightly, although significantly, increased (P < 0.05), the number of ACF per colon (157 +/- 7 and 198 +/- 14 (SE) in control and 3-OH-flavone groups, respectively, n = 10). ...
The suppressive effect of flavonoids on the cytotoxicity of linoleic acid hydroperoxide (LOOH) toward rat phenochromocytoma PC12 cells was examined. The extent of cytotoxicity was shown on the basis of % survival determined by the trypan blue exclusion test. On preincubation of cells with either 3-hydroxyflavone, quercetin, or luteolin prior to LOOH exposure, the cytotoxicity was considerably suppressed. In contrast, on coincubation of cells with either eriodictyol, quercetin, kaempherol, luteolin, or 3-hydroxyflavone and LOOH, it was markedly suppressed. Regardless of incubation conditions, quercetin, 3-hydroxyflavone, and luteolin were thus more effective as protective agents against the cytotoxicity than the other flavonoids. These flavonoids further showed a suppressive effect on coincubation rather than on preincubation. ..
Non-Human Toxicity Values
LD50 Mouse iv 56 mg/kg
Additional Infomation
Flavonol is a monohydroxyflavone that is the 3-hydroxy derivative of flavone. It is a monohydroxyflavone and a member of flavonols. It is a conjugate acid of a flavonol(1-).
3-Hydroxyflavone has been reported in Camellia sinensis, Humulus lupulus, and other organisms with data available.
See also: Flavone (annotation moved to).
Mechanism of Action
Epidermal growth factor (EGF) has been shown to induce proliferation in cells, however, the role of prostaglandin E(2) (PGE(2)) plays in EGF-induced proliferation in still unclear. EGF and PGE(2) showed proliferation responses in epidermoid carcinoma cell A431 by MTT and [(3)H] thymidine incorporation assay. ... The natural product, 3-OH flavone, showed the most-potent inhibitory activity on EGF-induced proliferation among 9 structurally-related compounds, and suppression of EGF receptor phosphorylation, ERK1/2 phosphorylation, and COX-2/PGE(2) production by 3-OH flavone was identified. PGE(2) addition attenuates the inhibitory activity of 3-OH flavone on EGF-induced proliferation by MTT assay and colony formation by soft agar assay. Additionally, 3-OH flavone also showed more-specific inhibition on EGF- than on fetal bovine serum (FBS)-induced proliferation in A431 cells. Results of /the/ present study provide evidence to demonstrate that PGE(2) is an important downstream molecule in EGF-induced proliferation, and 3-OH flavone, which inhibits PGE(2) production by blocking MAPK cascade, might reserve potential for development as an anti-cancer drug.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C15H10O3
Molecular Weight
238.24
Exact Mass
238.063
CAS #
577-85-5
PubChem CID
11349
Appearance
Light yellow to yellow solid powder
Density
1.367 g/cm3
Boiling Point
393.7ºC at 760 mmHg
Melting Point
171-172 °C(lit.)
Flash Point
151.5ºC
Index of Refraction
1.679
LogP
3.165
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
3
Rotatable Bond Count
1
Heavy Atom Count
18
Complexity
366
Defined Atom Stereocenter Count
0
InChi Key
HVQAJTFOCKOKIN-UHFFFAOYSA-N
InChi Code
InChI=1S/C15H10O3/c16-13-11-8-4-5-9-12(11)18-15(14(13)17)10-6-2-1-3-7-10/h1-9,17H
Chemical Name
3-hydroxy-2-phenylchromen-4-one
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: This product requires protection from light (avoid light exposure) during transportation and storage.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 33.33 mg/mL (139.90 mM)
Solubility (In Vivo)
Solubility in Formulation 1: 2.5 mg/mL (10.49 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: 2.5 mg/mL (10.49 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (10.49 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.1974 mL 20.9872 mL 41.9745 mL
5 mM 0.8395 mL 4.1974 mL 8.3949 mL
10 mM 0.4197 mL 2.0987 mL 4.1974 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us