yingweiwo

5-Bromouracil (5-bromoouracil)

Cat No.:V65382 Purity: ≥98%
5-Bromouracil is a biochemical compound that may be utilized as a biomaterial or organic/chemical reagent for biomedical research.
5-Bromouracil (5-bromoouracil)
5-Bromouracil (5-bromoouracil) Chemical Structure CAS No.: 51-20-7
Product category: Biochemical Assay Reagents
This product is for research use only, not for human use. We do not sell to patients.
Size Price
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
5-Bromouracil is a biochemical compound that may be utilized as a biomaterial or organic/chemical reagent for biomedical research.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
5-Bromouracil induces A-type DNA, which messes with the placement of nucleosomes.
ADME/Pharmacokinetics
Metabolism / Metabolites
Eosinophils use eosinophil peroxidase, hydrogen peroxide (H(2)O(2)), and bromide ion (Br(-)) to generate hypobromous acid (HOBr), a brominating intermediate. This potent oxidant may play a role in host defenses against invading parasites and eosinophil-mediated tissue damage. In this study, /the authors/ explore the possibility that HOBr generated by eosinophil peroxidase might oxidize nucleic acids. When /the authors/ exposed uracil, uridine, or deoxyuridine to reagent HOBr, each reaction mixture yielded a single major oxidation product that comigrated on reversed-phase HPLC with the corresponding authentic brominated pyrimidine. The eosinophil peroxidase-H(2)O(2)-Br(-) system also converted uracil into a single major oxidation product, and the yield was near-quantitative. Mass spectrometry, HPLC, UV--visible spectroscopy, and NMR spectroscopy identified the product as 5-bromouracil. Eosinophil peroxidase required H(2)O(2) and Br(-) to produce 5-bromouracil, implicating HOBr as an intermediate in the reaction. Primary and secondary bromamines also brominated uracil, suggesting that long-lived bromamines also might be physiologically relevant brominating intermediates. Human eosinophils used the eosinophil peroxidase-H(2)O(2)-Br(-) system to oxidize uracil. The product was identified as 5-bromouracil by mass spectrometry, HPLC, and UV--visible spectroscopy. Collectively, these results indicate that HOBr generated by eosinophil peroxidase oxidizes uracil to 5-bromouracil. Thymidine phosphorylase, a pyrimidine salvage enzyme, transforms 5-bromouracil to 5-bromodeoxyridine, a mutagenic analogue of thymidine. These findings raise the possibility that halogenated nucleobases generated by eosinophil peroxidase exert cytotoxic and mutagenic effects at eosinophil-rich sites of inflammation.
... Using a sensitive and specific mass spectrometric method, /the authors/ detected two products of myeloperoxidase, 5-chlorouracil and 5-bromouracil, in neutrophil-rich human inflammatory tissue. Myeloperoxidase is the most likely source of 5-chlorouracil in vivo because halogenated uracil is a specific product of the myeloperoxidase system in vitro. In contrast, previous studies have demonstrated that 5-bromouracil could be generated by either eosinophil peroxidase or myeloperoxidase, which preferentially brominates uracil at plasma concentrations of halide and under moderately acidic conditions. These observations indicate that the myeloperoxidase system promotes nucleobase halogenation in vivo. Because 5-chlorouracil and 5-bromouracil can be incorporated into nuclear DNA, and these thymine analogs are well known mutagens, our observations raise the possibility that halogenation reactions initiated by phagocytes provide one pathway for mutagenesis and cytotoxicity at sites of inflammation.
5-bromouracil is metabolized into 5-bromodeoxyuridine via thymidine phosphorylase. (L626)
Toxicity/Toxicokinetics
Toxicity Summary
Thymidine phosphorylase, a pyrimidine salvage enzyme, transforms 5-bromouracil to 5-bromodeoxyuridine, a mutagenic analogue of thymidine. Ultimately, 5-bromouracil acts on DNA. It induces a random DNA point mutation via base substitution. The base pair will change from an A-T to a G-C or from a G-C to an A-T after a number of replication cycles, depending on whether 5-BrU is within the DNA molecule or is an incoming base when it is enolized or ionized. 5-Bromouracil normally pairs with adenine. However, the proportion of 5-bromouracil in the enol tautomer is higher than that of thymine because the bromine atom is more electronegative than is a methyl group on the C-5 atom. Thus, the incorporation of 5-bromouracil is especially likely to cause altered base-pairing in a subsequent round of DNA replication.
Toxicity Data
LD50: 1700 mg/kg (Rat, Intraperitoneal); LD50 1400 mg/kg (Mouse, Intraperitoneal) (T14)
Interactions
The presence of 5-bromouracil (BU) as well as 5-bromo-2-deoxyuridine (BUdR) in the cultivation media of bacteria results in the distinct increase of UV sensitivity. With the nucleic acid base analogue 8-azaadenine (8-AA) a similar effect was confirmed, however, not so pronounced. In the experiments reported here the combined action of BU or BUdR and 8-AA on Escherichia coli, Proteus mirabilis, Bacillus subtilis and Bacillus cereus was investigated. The sensitization effect of BUdR does not increase if 8-AA is present additionally during cultivation. On the contrary, a decrease of sensibilization occurs. This result may be caused by the protective effect of the adenine derivative against UV irradiation, if it is present in the cell, but not incorporated into the DNA.
The damages induced in E. coli AB2487 recA by Cerenkov emission and ionizing radiation contribute in an additive fashion to the overall lethality, and do not interact in a synergistic fashion. Bromouracil substitution enhances the lethal action of high energy X-irradiation on E. coli AB2487 recA by a mechanism involving enhanced radiosensitivity and enhanced photosensitivity.
Non-Human Toxicity Values
LD50 Mouse ip 1400 mg/kg
LD50 Rat ip 1700 mg/kg
Additional Infomation
Therapeutic Uses
Antimetabolite
/EXPTL THER/ The ternary complexes of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) ions with 5-halouracils, viz., 5-fluorouracil (5FU), 5-chlorouracil (5ClU), and 5-bromouracil (5BrU), and the biologically important ligand L-histidine (HISD) have been synthesized and characterized by elemental analysis, conductance measurements, infrared spectra, electronic spectra, and magnetic moment (room temperature) measurements. On the basis of these studies, the structures of the complexes have been proposed. All these ternary complexes were screened for their antitumor activity against Dalton's lymphoma in C3H/He mice. It was found that only Mn(II)-5BrU-HISD, Co(II)-5BrU-HISD, Cu(II)-5ClU-HISD, Cu(II)-5BrU-HISD, Zn(II)-5FU-HISD, and Zn(II)-5BrU-HISD complexes have significant antitumor activity with T/C greater than 125% (where T and C represent mean lifespan of treated mice and control mice respectively). The Mn(II)-5FU-HISD, Co(II)-5FU-HISD, Co(II)-5ClU-HISD, Ni(II)-5ClU-HISD, Ni(II)-5BrU-HISD, and Zn(II)-5ClU-HISD complexes are also effective antitumor agents, with T/C greater than 115%. The complexes that showed effective antitumor action in vivo were also found to inhibit 3H-thymidine incorporation (DNA replication) in Dalton's lymphoma cells in vitro.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C4H3BRN2O2
Molecular Weight
190.98
Exact Mass
189.937
CAS #
51-20-7
PubChem CID
5802
Appearance
Prisms from water
Density
2.0±0.1 g/cm3
Boiling Point
384ºC
Melting Point
>300 °C(lit.)
Index of Refraction
1.590
LogP
-0.35
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
2
Rotatable Bond Count
0
Heavy Atom Count
9
Complexity
199
Defined Atom Stereocenter Count
0
SMILES
BrC1=C([H])N([H])C(N([H])C1=O)=O
InChi Key
LQLQRFGHAALLLE-UHFFFAOYSA-N
InChi Code
InChI=1S/C4H3BrN2O2/c5-2-1-6-4(9)7-3(2)8/h1H,(H2,6,7,8,9)
Chemical Name
5-bromo-1H-pyrimidine-2,4-dione
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 100 mg/mL (523.62 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (13.09 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (13.09 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (13.09 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 5.2362 mL 26.1808 mL 52.3615 mL
5 mM 1.0472 mL 5.2362 mL 10.4723 mL
10 mM 0.5236 mL 2.6181 mL 5.2362 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us