yingweiwo

2,3-Pentanedione

Alias: 2,3-Pentanedione
Cat No.:V62466 Purity: ≥98%
2,3-Pentanedione is a common ingredient in synthetic flavors used to provide notes of butter, strawberry, caramel, fruit, rum or cheese in beverages, ice cream, candies, baked goods, gelatin and puddings.
2,3-Pentanedione
2,3-Pentanedione Chemical Structure CAS No.: 600-14-6
Product category: Plants
This product is for research use only, not for human use. We do not sell to patients.
Size Price
Other Sizes

Other Forms of 2,3-Pentanedione:

  • 2,3-Pentanedione-d5
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
2,3-Pentanedione is a common ingredient in synthetic flavors used to provide notes of butter, strawberry, caramel, fruit, rum or cheese in beverages, ice cream, candies, baked goods, gelatin and puddings. In addition, as a byproduct of fermentation found in beer, wine, and yogurt, 2,3-pentanedione is also naturally released when coffee beans are roasted.
Biological Activity I Assay Protocols (From Reference)
ADME/Pharmacokinetics
Metabolism / Metabolites
We developed a system to expose cultured human bronchial/tracheal epithelial cells (NHBEs) to flavoring vapors. NHBEs were exposed for 6 hr to diacetyl or 2,3-pentanedione vapors (25 or >/= 60 ppm)... Analysis of the basolateral medium indicated that NHBEs metabolize diacetyl and 2,3-pentanedione to acetoin and 2-hydroxy-3-pentanone, respectively.
Toxicity/Toxicokinetics
Toxicity Summary
IDENTIFICATION AND USE: 2,3-Pentanedione is a yellow liquid. It is used as flavoring agent (butter flavoring) including many e-cigarette brands. HUMAN EXPOSURE AND TOXICITY: Inhalation of butter flavoring by workers in the microwave popcorn industry may result in "popcorn workers' lung." Cultured human bronchial/tracheal epithelial cells (NHBEs) were exposed for 6 hours to diacetyl or 2,3-pentanedione vapors (25 or >/= 60 ppm) and the effects on short circuit current and transepithelial resistance (Rt) were measured. Immediately after exposure to 25 ppm both flavorings reduced Na+ transport, without affecting Cl- transport or Na+,K+-pump activity. Concentrations (100-360 ppm) of diacetyl and 2,3-pentanedione reported to give rise in vivo to epithelial damage, and 60 ppm, caused death of NHBEs 0 hours post-exposure. The results indicate that ion transport is inhibited transiently in airway epithelial cells by lower concentrations of the flavorings than those that result in morphological changes of the cells in vivo or in vitro. ANIMAL STUDIES: Rats that inhaled air, 2,3-pentanedione (112, 241, 318, or 354 ppm) for 6 hours were sacrificed the following day. Rats inhaling 2,3-pentanedione developed necrotizing rhinitis, tracheitis, and bronchitis. To investigate delayed toxicity, additional rats inhaled 318 (range, 317.9-318.9) ppm 2,3-pentanedione for 6 hours and were sacrificed 0 to 2, 12 to 14, or 18 to 20 hours after exposure. Respiratory epithelial injury in the upper nose involved both apoptosis and necrosis, which progressed through 12 to 14 hours after exposure. Olfactory neuroepithelial injury included loss of olfactory neurons that showed reduced expression of the 2,3-pentanedione-metabolizing enzyme, dicarbonyl/L-xylulose reductase, relative to sustentacular cells. Caspase 3 activation occasionally involved olfactory nerve bundles that synapse in the olfactory bulb (OB). An additional group of rats inhaling 270 ppm 2,3-pentanedione for 6 hours 41 minutes showed increased expression of IL-6 and nitric oxide synthase-2 and decreased expression of vascular endothelial growth factor A in the OB, striatum, hippocampus, and cerebellum using real-time PCR. Claudin-1 expression increased in the OB and striatum. In other experiment, male and female rats and mice were exposed to 0, 50, 100, or 200 ppm 2,3-pentanedione 6 hr/d, 5 d/wk for up to 2 weeks. Bronchoalveolar lavage fluid (BALF) was collected after 1, 3, 5, and 10 exposures, and histopathology was evaluated after 12 exposures. MCP-1, MCP-3, CRP, FGF-9, fibrinogen, and OSM were increased 2- to 9-fold in BALF of rats exposed for 5 and 10 days to 200 ppm. In mice, only fibrinogen was increased after 5 exposures to 200 ppm. The epithelium lining the respiratory tract was the site of toxicity in all mice and rats exposed to 200 ppm. Significantly, 2,3-pentanedione also caused both intraluminal and intramural fibrotic airway lesions in rats. In third experiment, rats exposed to 150 or 200 ppm 2,3-pentanedione developed bronchial fibrosis. In mice, 2,3-pentanedione was not a dermal irritant when tested at concentrations up to 50%. However, concentration-dependent increases in lymphocyte proliferation were observed following exposure to 2,3-pentanedione in mice.
Non-Human Toxicity Values
LD50 Rat oral 3000 mg/kg
References

[1]. Bronchial and bronchiolar fibrosis in rats exposed to 2,3-pentanedione vapors: implications for bronchiolitis obliterans in humans. Toxicol Pathol. 2012;40(3):448-465.

Additional Infomation
Pentane-2,3-dione is an alpha-diketone that is pentane substituted at the 2- and 3-positions by oxo groups. It has a role as a flavouring agent. It is an alpha-diketone and a methyl ketone. It derives from a hydride of a pentane.
2,3-Pentanedione has been reported in Nicotiana tabacum, Allium cepa, and other organisms with data available.
2,3-pentanedione is a metabolite found in or produced by Saccharomyces cerevisiae.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C5H8O2
Molecular Weight
100.12
Exact Mass
100.052
CAS #
600-14-6
Related CAS #
2,3-Pentanedione-d5; 352431-46-0
PubChem CID
11747
Appearance
Light yellow to green yellow liquid
Density
1.0±0.1 g/cm3
Boiling Point
108.0±0.0 °C at 760 mmHg
Melting Point
-52 °C
Flash Point
18.9±0.0 °C
Vapour Pressure
26.4±0.2 mmHg at 25°C
Index of Refraction
1.395
LogP
-0.8
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
2
Rotatable Bond Count
2
Heavy Atom Count
7
Complexity
94.3
Defined Atom Stereocenter Count
0
SMILES
O=C(C(C([H])([H])[H])=O)C([H])([H])C([H])([H])[H]
InChi Key
TZMFJUDUGYTVRY-UHFFFAOYSA-N
InChi Code
InChI=1S/C5H8O2/c1-3-5(7)4(2)6/h3H2,1-2H3
Chemical Name
pentane-2,3-dione
Synonyms
2,3-Pentanedione
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 100 mg/mL (998.80 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (24.97 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (24.97 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (24.97 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 9.9880 mL 49.9401 mL 99.8801 mL
5 mM 1.9976 mL 9.9880 mL 19.9760 mL
10 mM 0.9988 mL 4.9940 mL 9.9880 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us