Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
5mg |
|
||
10mg |
|
||
Other Sizes |
|
Targets |
bitter taste receptor (Tas2r); ggTas2r1[1]
|
---|---|
ln Vitro |
Bitter taste is one of the basic taste modalities, warning against consuming potential poisons. Bitter compounds activate members of the bitter taste receptor (Tas2r) subfamily of G protein-coupled receptors (GPCRs). The number of functional Tas2rs is species-dependent. Chickens represent an intriguing minimalistic model, because they detect the bitter taste of structurally different molecules with merely three bitter taste receptor subtypes. We investigated the binding modes of several known agonists of a representative chicken bitter taste receptor, ggTas2r1. Because of low sequence similarity between ggTas2r1 and crystallized GPCRs (~10% identity, ~30% similarity at most), the combination of computational approaches with site-directed mutagenesis was used to characterize the agonist-bound conformation of ggTas2r1 binding site between TMs 3, 5, 6 and 7. We found that the ligand interactions with N93 in TM3 and/or N247 in TM5, combined with hydrophobic contacts, are typically involved in agonist recognition. Next, the ggTas2r1 structural model was successfully used to identify three quinine analogues (epiquinidine, ethylhydrocupreine, quinidine) as new ggTas2r1 agonists. The integrated approach validated here may be applicable to additional cases where the sequence identity of the GPCR of interest and the existing experimental structures is low[1].
|
Enzyme Assay |
Site-directed mutagenesis[1]
In-vitro mutagenesis by PCR-mediated recombination44 was performed as detailed before19, 20, 45 using the cDNA of ggTas2r1 cloned in the vector pcDNA5/FRT available from previous experiments9 as template. Briefly, template cDNA was amplified in two separate reactions using CMV forward and the corresponding reverse mutagenesis primer and BGH reverse and the corresponding forward mutagenesis primer, respectively. Next, the two generated subfragments were fused in the following PCR reaction carried out in the presence of CMV forward and BGH reverse primers. The mutated ggTas2r1 coding region was ligated after EcoR I and NotI restriction with the vector pcDNA5/FRT, which has been modified to result in the in-frame addition of a 5′ sst3-tag and a 3′ hsv-tag9. For a list of oligonucleotides used for mutagenesis see Table 2. |
Cell Assay |
Calcium-mobilization assays[1]
The point-mutated expression constructs, the native ggTas2r1 construct, as well as empty expression vectors as controls were transiently transfected in HEK 293T cells stably expressing the chimeric Gα protein Gα16gust44, which were grown in 96-well plates exactly as described previously9. About 24 h after transfection, the cells were loaded with the calcium-sensitive dye Fluo4-AM in the presence of 2.5 mM probenecid, washed and placed in a fluorometric imaging plate reader). Different concentrations of the bitter compounds were automatically applied and changes in fluorescence were monitored. A second application of 100 nM SST-14 stimulating endogenous somatostatin receptors was included as vitality control. Dose-response relations were calculated with SigmaPlot as before. |
References | |
Additional Infomation |
An alkaloid derived from the bark of the cinchona tree. It is used as an antimalarial drug, and is the active ingredient in extracts of the cinchona that have been used for that purpose since before 1633. Quinine is also a mild antipyretic and analgesic and has been used in common cold preparations for that purpose. It was used commonly and as a bitter and flavoring agent, and is still useful for the treatment of babesiosis. Quinine is also useful in some muscular disorders, especially nocturnal leg cramps and myotonia congenita, because of its direct effects on muscle membrane and sodium channels. The mechanisms of its antimalarial effects are not well understood.
See also: Quinidine (annotation moved to); Quinine Sulfate (annotation moved to). |
Molecular Formula |
C20H24N2O2
|
---|---|
Molecular Weight |
324.42
|
Exact Mass |
324.184
|
CAS # |
572-59-8
|
PubChem CID |
94175
|
Appearance |
White to off-white Solid-Liquid Mixture
|
Density |
1.218g/cm3
|
Boiling Point |
495.88ºC at 760 mmHg
|
Melting Point |
111-113°
|
Flash Point |
253.699ºC
|
Index of Refraction |
1.638
|
LogP |
3.111
|
Hydrogen Bond Donor Count |
1
|
Hydrogen Bond Acceptor Count |
4
|
Rotatable Bond Count |
4
|
Heavy Atom Count |
24
|
Complexity |
457
|
Defined Atom Stereocenter Count |
4
|
SMILES |
COc1ccc2nccc(C(O)C3CC4CCN3CC4C=C)c2c1 |TLB:20:19:16.15:13.12,10:12:19.18:16.15|
|
InChi Key |
LOUPRKONTZGTKE-AFHBHXEDSA-N
|
InChi Code |
InChI=1S/C20H24N2O2/c1-3-13-12-22-9-7-14(13)10-19(22)20(23)16-6-8-21-18-5-4-15(24-2)11-17(16)18/h3-6,8,11,13-14,19-20,23H,1,7,9-10,12H2,2H3/t13-,14-,19+,20+/m0/s1
|
Chemical Name |
(R)-[(2R,4S,5R)-5-ethenyl-1-azabicyclo[2.2.2]octan-2-yl]-(6-methoxyquinolin-4-yl)methanol
|
Synonyms |
Epiquinidine; 572-59-8; (9R)-6'-Methoxycinchonan-9-ol; 9-epi-Quinidine; GNF-Pf-180; RN974X9U97; (R)-[(2R,4S,5R)-5-ethenyl-1-azabicyclo[2.2.2]octan-2-yl]-(6-methoxyquinolin-4-yl)methanol; .beta.-Quinine;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO: 100 mg/mL (308.24 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.5 mg/mL (7.71 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.5 mg/mL (7.71 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.5 mg/mL (7.71 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 3.0824 mL | 15.4121 mL | 30.8242 mL | |
5 mM | 0.6165 mL | 3.0824 mL | 6.1648 mL | |
10 mM | 0.3082 mL | 1.5412 mL | 3.0824 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.