yingweiwo

Epiquinidine (table quinidine)

Alias: Epiquinidine; 572-59-8; (9R)-6'-Methoxycinchonan-9-ol; 9-epi-Quinidine; GNF-Pf-180; RN974X9U97; (R)-[(2R,4S,5R)-5-ethenyl-1-azabicyclo[2.2.2]octan-2-yl]-(6-methoxyquinolin-4-yl)methanol; .beta.-Quinine;
Cat No.:V62275 Purity: ≥98%
Epiquinidine is a quinine analog that works as a ggTas2r1 agonist.
Epiquinidine (table quinidine)
Epiquinidine (table quinidine) Chemical Structure CAS No.: 572-59-8
Product category: Alkaloids
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Epiquinidine is a quinine analogue that acts as a ggTas2r1 agonist. Epiquinidine activates ggTas2r1 at or above 10 µM. An alkaloid derived from the bark of the cinchona tree. It is used as an antimalarial drug, and is the active ingredient in extracts of the cinchona that have been used for that purpose since before 1633. Quinine is also a mild antipyretic and analgesic and has been used in common cold preparations for that purpose. It was used commonly and as a bitter and flavoring agent, and is still useful for the treatment of babesiosis. Quinine is also useful in some muscular disorders, especially nocturnal leg cramps and myotonia congenita, because of its direct effects on muscle membrane and sodium channels. The mechanisms of its antimalarial effects are not well understood.
Biological Activity I Assay Protocols (From Reference)
Targets
bitter taste receptor (Tas2r); ggTas2r1[1]
ln Vitro
Bitter taste is one of the basic taste modalities, warning against consuming potential poisons. Bitter compounds activate members of the bitter taste receptor (Tas2r) subfamily of G protein-coupled receptors (GPCRs). The number of functional Tas2rs is species-dependent. Chickens represent an intriguing minimalistic model, because they detect the bitter taste of structurally different molecules with merely three bitter taste receptor subtypes. We investigated the binding modes of several known agonists of a representative chicken bitter taste receptor, ggTas2r1. Because of low sequence similarity between ggTas2r1 and crystallized GPCRs (~10% identity, ~30% similarity at most), the combination of computational approaches with site-directed mutagenesis was used to characterize the agonist-bound conformation of ggTas2r1 binding site between TMs 3, 5, 6 and 7. We found that the ligand interactions with N93 in TM3 and/or N247 in TM5, combined with hydrophobic contacts, are typically involved in agonist recognition. Next, the ggTas2r1 structural model was successfully used to identify three quinine analogues (epiquinidine, ethylhydrocupreine, quinidine) as new ggTas2r1 agonists. The integrated approach validated here may be applicable to additional cases where the sequence identity of the GPCR of interest and the existing experimental structures is low[1].
Enzyme Assay
Site-directed mutagenesis[1]
In-vitro mutagenesis by PCR-mediated recombination44 was performed as detailed before19, 20, 45 using the cDNA of ggTas2r1 cloned in the vector pcDNA5/FRT available from previous experiments9 as template. Briefly, template cDNA was amplified in two separate reactions using CMV forward and the corresponding reverse mutagenesis primer and BGH reverse and the corresponding forward mutagenesis primer, respectively. Next, the two generated subfragments were fused in the following PCR reaction carried out in the presence of CMV forward and BGH reverse primers. The mutated ggTas2r1 coding region was ligated after EcoR I and NotI restriction with the vector pcDNA5/FRT, which has been modified to result in the in-frame addition of a 5′ sst3-tag and a 3′ hsv-tag9. For a list of oligonucleotides used for mutagenesis see Table 2.
Cell Assay
Calcium-mobilization assays[1]
The point-mutated expression constructs, the native ggTas2r1 construct, as well as empty expression vectors as controls were transiently transfected in HEK 293T cells stably expressing the chimeric Gα protein Gα16gust44, which were grown in 96-well plates exactly as described previously9. About 24 h after transfection, the cells were loaded with the calcium-sensitive dye Fluo4-AM in the presence of 2.5 mM probenecid, washed and placed in a fluorometric imaging plate reader). Different concentrations of the bitter compounds were automatically applied and changes in fluorescence were monitored. A second application of 100 nM SST-14 stimulating endogenous somatostatin receptors was included as vitality control. Dose-response relations were calculated with SigmaPlot as before.
References

[1]. Ligand binding modes from low resolution GPCR models and mutagenesis: chicken bitter taste receptor as a test-case. Sci Rep. 2017 Aug 15;7(1):8223.

Additional Infomation
An alkaloid derived from the bark of the cinchona tree. It is used as an antimalarial drug, and is the active ingredient in extracts of the cinchona that have been used for that purpose since before 1633. Quinine is also a mild antipyretic and analgesic and has been used in common cold preparations for that purpose. It was used commonly and as a bitter and flavoring agent, and is still useful for the treatment of babesiosis. Quinine is also useful in some muscular disorders, especially nocturnal leg cramps and myotonia congenita, because of its direct effects on muscle membrane and sodium channels. The mechanisms of its antimalarial effects are not well understood.
See also: Quinidine (annotation moved to); Quinine Sulfate (annotation moved to).
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C20H24N2O2
Molecular Weight
324.42
Exact Mass
324.184
CAS #
572-59-8
PubChem CID
94175
Appearance
White to off-white Solid-Liquid Mixture
Density
1.218g/cm3
Boiling Point
495.88ºC at 760 mmHg
Melting Point
111-113°
Flash Point
253.699ºC
Index of Refraction
1.638
LogP
3.111
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
4
Rotatable Bond Count
4
Heavy Atom Count
24
Complexity
457
Defined Atom Stereocenter Count
4
SMILES
COc1ccc2nccc(C(O)C3CC4CCN3CC4C=C)c2c1 |TLB:20:19:16.15:13.12,10:12:19.18:16.15|
InChi Key
LOUPRKONTZGTKE-AFHBHXEDSA-N
InChi Code
InChI=1S/C20H24N2O2/c1-3-13-12-22-9-7-14(13)10-19(22)20(23)16-6-8-21-18-5-4-15(24-2)11-17(16)18/h3-6,8,11,13-14,19-20,23H,1,7,9-10,12H2,2H3/t13-,14-,19+,20+/m0/s1
Chemical Name
(R)-[(2R,4S,5R)-5-ethenyl-1-azabicyclo[2.2.2]octan-2-yl]-(6-methoxyquinolin-4-yl)methanol
Synonyms
Epiquinidine; 572-59-8; (9R)-6'-Methoxycinchonan-9-ol; 9-epi-Quinidine; GNF-Pf-180; RN974X9U97; (R)-[(2R,4S,5R)-5-ethenyl-1-azabicyclo[2.2.2]octan-2-yl]-(6-methoxyquinolin-4-yl)methanol; .beta.-Quinine;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 100 mg/mL (308.24 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (7.71 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (7.71 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (7.71 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.0824 mL 15.4121 mL 30.8242 mL
5 mM 0.6165 mL 3.0824 mL 6.1648 mL
10 mM 0.3082 mL 1.5412 mL 3.0824 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
Effectiveness and Safety of Quinine Sulfate as add-on Therapy for COVID-19 in Hospitalized Adults in Indonesia ( DEAL-COVID19 )
CTID: NCT05808231
Phase: N/A
Status: Recruiting
Date: 2023-04-11
Influence of Probenecid and Quinine on the Pharmacokinetics of Azidothymidine
CTID: NCT00000706
Phase: N/A
Status: Completed
Date: 2021-11-03
Topical Irrigation Therapy for CRS
CTID: NCT02630472
Phase: Phase 1/Phase 2
Status: Terminated
Date: 2019-03-13
Comparison Bioavailability Study of Quinine Sulfate in Chocolate Pudding
CTID: NCT00806078
Phase: Phase 1
Status: Completed
Date: 2012-08-31
Drug - Drug Interaction Study of Quinine Sulfate and Ciprofloxacin
CTID: NCT00785980
Phase: Phase 1
Status: Completed
Date: 2012-08-07
Contact Us