yingweiwo

Combretastatin A1 phosphate (Oxi4503; CA1P; Combretastatin A1 diphosphate)

Cat No.:V62173 Purity: ≥98%
Combretastatin A1 phosphate (Oxi4503; CA1P; Combretastatin A1 diphosphate) is a potent vascular disrupting agent.
Combretastatin A1 phosphate (Oxi4503; CA1P; Combretastatin A1 diphosphate)
Combretastatin A1 phosphate (Oxi4503; CA1P; Combretastatin A1 diphosphate) Chemical Structure CAS No.: 288847-35-8
Product category: Others 12
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Combretastatin A1 phosphate (Oxi4503; CA1P; Combretastatin A1 diphosphate) is a potent vascular disrupting agent. Combretastatin A1 phosphate has anti-angiogenic effects on tumors. Combretastatin A1 phosphate may be utilized in pancreatic neuroendocrine tumor research.
Biological Activity I Assay Protocols (From Reference)
ln Vivo
In combination with sunitinib, combretastatin A1 phosphate (100 mg/kg; Ip; once at day 16 post-tumor induction) exhibits anti-tumor activity and anti-angiogenic effects on mouse tumors[2].
Animal Protocol
Animal/Disease Models: Male CBA mice (CRC liver metastasis)[2]
Doses: 100 mg/kg (received 40 mg/kg of Sunitinib daily from day 14 to 21 post tumor induction)
Route of Administration: Ip; once at day 16 post tumor induction
Experimental Results: Demonstrated a Dramatically diminished mean liver weight compared to livers from non tumor bearing animals, Dramatically decreased tumor vessels.
References
[1]. Patterson DM, et al. Phase I clinical and pharmacokinetic evaluation of the vascular-disrupting agent OXi4503 in patients with advanced solid tumors. Clin Cancer Res. 2012 Mar 1;18(5):1415-25.
[2]. Nguyen L, et al. Vascular disruptive agent OXi4503 and anti-angiogenic agent Sunitinib combination treatment prolong survival of mice with CRC liver metastasis. BMC Cancer. 2016 Jul 26;16:533.
Additional Infomation
OXI-4503 is investigated in clinical trials for treating cancer/tumors. OXI-4503 is a solid. OXI-4503 blocks and destroys tumor vasculature, resulting in extensive tumor cell death and necrosis. OXI-4503 (combretastatin A1 di-phosphate / CA1P) is a unique and highly potent, dual-mechanism vascular disrupting agent (VDA). In addition, however, preclinical data demonstrates that OXI-4503 is metabolized by oxidative enzymes (e.g., tyrosinase and peroxidases), which are elevated in many solid tumors and tumor infiltrates, to an orthoquinone chemical species that has direct cytotoxic effects on tumor cells. Preclinical studies have demonstrated that OXI-4503 has (i) single-agent activity against a range of xenograft tumor models; and (ii) synergistic or additive effects when incorporated in various combination regimens with chemotherapy, molecularly-targeted therapies (including tumor-angiogenesis inhibitors), and radiation therapy.
Combretastatin A1 Diphosphate is the diphosphate prodrug of the stilbenoid combretastatin A1, originally isolated from the plant Combretum caffrum, with vascular-disrupting and antineoplastic activities. Upon administration, combretastatin A1 diphosphate (CA1P) is dephosphorylated to the active metabolite combretastatin A1 (CA1), which promotes rapid microtubule depolymerization; endothelial cell mitotic arrest and apoptosis, destruction of the tumor vasculature, disruption of tumor blood flow and tumor cell necrosis may ensue. In addition, orthoquinone intermediates, metabolized from combretastatin A1 by oxidative enzymes found to be elevated in some tumor types, may bind to tumor cell thiol-specific antioxidant proteins and DNA, and stimulate oxidative stress by enhancing superoxide/hydrogen peroxide production. CA1 binds to tubulin at the same site as colchicine but with higher affinity.
Drug Indication
Investigated for use/treatment in cancer/tumors (unspecified).
Mechanism of Action
OXi4503 blocks and destroys tumor vasculature, resulting in extensive tumor cell death and necrosis. It induced the shutdown of tumor blood vessels and affected peripheral tumor regions less than central regions.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C18H22O12P2
Molecular Weight
492.31
Exact Mass
492.059
CAS #
288847-35-8
PubChem CID
6918546
Appearance
Typically exists as solid at room temperature
LogP
2.834
Hydrogen Bond Donor Count
4
Hydrogen Bond Acceptor Count
12
Rotatable Bond Count
10
Heavy Atom Count
32
Complexity
692
Defined Atom Stereocenter Count
0
SMILES
C1(OP(O)(O)=O)=C(/C=C\C2=CC(OC)=C(OC)C(OC)=C2)C=CC(OC)=C1OP(O)(O)=O
InChi Key
GSOXMQLWUDQTNT-WAYWQWQTSA-N
InChi Code
InChI=1S/C18H22O12P2/c1-25-13-8-7-12(16(29-31(19,20)21)18(13)30-32(22,23)24)6-5-11-9-14(26-2)17(28-4)15(10-11)27-3/h5-10H,1-4H3,(H2,19,20,21)(H2,22,23,24)/b6-5-
Chemical Name
[3-methoxy-2-phosphonooxy-6-[(Z)-2-(3,4,5-trimethoxyphenyl)ethenyl]phenyl] dihydrogen phosphate
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: This product requires protection from light (avoid light exposure) during transportation and storage.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 100 mg/mL (203.12 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 5 mg/mL (10.16 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 50.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 5 mg/mL (10.16 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 50.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.0312 mL 10.1562 mL 20.3124 mL
5 mM 0.4062 mL 2.0312 mL 4.0625 mL
10 mM 0.2031 mL 1.0156 mL 2.0312 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us