Polymyxin B sulphate

Alias: KS-1428; KS 1428; KS1428; Polymyxin B Sulfate.
Cat No.:V1863 Purity: ≥98%
Polymyxin B (also known as Aerosporin, PMB, Poly-RX) is an antibiotic anda cationic surfactantprimarily used for resistant gram-negative infections.
Polymyxin B sulphate Chemical Structure CAS No.: 1405-20-5
Product category: Bacterial
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
500mg
1g
2g
5g
10g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Polymyxin B (also known as Aerosporin, PMB, Poly-RX) is an antibiotic and a cationic surfactant primarily used for resistant gram-negative infections. Polymyxin B sulfate is a mixture of polymyxins B1 and B2, obtained from Bacillus polymyxa strains. They are basic polypeptides of about eight amino acids and have cationic detergent action on cell membranes. Polymyxin B is used for infections with gram-negative organisms, but may be neurotoxic and nephrotoxic.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
MICs of 0.5 mg/l for E. Coli strain IH3080 are demonstrated by Polymyxin B Sulfate's antibacterial properties.
ln Vivo
A mouse model of lung or thigh infection demonstrates antibacterial activity when treated with Polymyxin B Sulfate (0.5-120 mg/kg; s.c.).
The mouse bactericidal effect of Polymyxin B Sulfate (2 mg/kg, s.c.) against E. coli strain IH3080 is strong.
Animal Protocol
Animal Model: Eight-week-old, 24-30 g, female Swiss mice[2]
Dosage: For the model of thigh infection, 0.5-120 mg/kg; for the lung infection mode, 5-120 mg/kg
Administration: S.c.
Result: demonstrated antibacterial activity against three strains of K. pneumoniae.
References

[1]. Antimicrob Agents Chemother. 1989 Sep;33(9):1428-34.

[2]. J Antimicrob Chemother. 2018 Feb 1;73(2):462-468.

[3]. J Antimicrob Chemother. 2010 May;65(5):981-5.

[4].Am J Physiol.1991 Jul;261(1 Pt 2):R26-31.

[5]. Eur J Pharmacol.1991 May 25;207(1):17-22.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C56H98N16O13.H2SO4
Molecular Weight
1301.56
Elemental Analysis
C, 51.68; H, 7.74; N, 17.22; O, 20.90; S, 2.46
CAS #
1405-20-5
Related CAS #
1405-20-5
Appearance
Solid powder
SMILES
OS(=O)(=O)O.CCC(CCCCC(NC(C(NC(C(NC(C(NC1C(=O)NC(CCN)C(=O)NC(CC2C=CC=CC=2)C(=O)NC(CC(C)C)C(=O)NC(CCN)C(=O)NC(CCN)C(=O)NC(C(O)C)C(=O)NCC1)=O)CCN)=O)C(O)C)=O)CCN)=O)C
InChi Key
HFMDLUQUEXNBOP-UHFFFAOYSA-N
InChi Code
InChI=1S/C56H98N16O13.H2O4S/c1-7-32(4)13-11-12-16-44(75)63-36(17-23-57)51(80)72-46(34(6)74)56(85)68-39(20-26-60)48(77)67-41-22-28-62-55(84)45(33(5)73)71-52(81)40(21-27-61)65-47(76)37(18-24-58)66-53(82)42(29-31(2)3)69-54(83)43(30-35-14-9-8-10-15-35)70-49(78)38(19-25-59)64-50(41)79;1-5(2,3)4/h8-10,14-15,31-34,36-43,45-46,73-74H,7,11-13,16-30,57-61H2,1-6H3,(H,62,84)(H,63,75)(H,64,79)(H,65,76)(H,66,82)(H,67,77)(H,68,85)(H,69,83)(H,70,78)(H,71,81)(H,72,80);(H2,1,2,3,4)
Chemical Name
N-[(2S)-4-amino-1-[[(2S,3R)-1-[[(2S)-4-amino-1-oxo-1-[[(3S,6S,9S,12S,15R,18R,21S)-6,9,18-tris(2-aminoethyl)-15-benzyl-3-[(1R)-1-hydroxyethyl]-12-(2-methylpropyl)-2,5,8,11,14,17,20-heptaoxo-1,4,7,10,13,16,19-heptazacyclotricos-21-yl]amino]butan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-1-oxobutan-2-yl]-6-methyloctanamide;sulfuric acid
Synonyms
KS-1428; KS 1428; KS1428; Polymyxin B Sulfate.
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~33.33 mg/mL
H2O : ~16.67 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 0.71 mg/mL (Infinity mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 7.1 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 0.71 mg/mL (Infinity mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 7.1 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 0.71 mg/mL (Infinity mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 7.1 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 10% DMSO+40% PEG300+5% Tween-80+45% Saline: ≥ 0.71 mg/mL (Infinity mM)

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.7683 mL 3.8415 mL 7.6831 mL
5 mM 0.1537 mL 0.7683 mL 1.5366 mL
10 mM 0.0768 mL 0.3842 mL 0.7683 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Total plasma polymyxin B concentration versus time after administration of single subcutaneous doses of 2, 4, 8, 16 or 32 mg/kg polymyxin B in neutropenic infected mice. [2]. J Antimicrob Chemother. 2018 Feb 1;73(2):462-468.
  • Diagram of the final population pharmacokinetic model. SC, subcutaneous. [2]. J Antimicrob Chemother. 2018 Feb 1;73(2):462-468.
  • Visual predictive checks of the model fits to the plasma polymyxin B concentration versus time data, stratified by dose. [2]. J Antimicrob Chemother. 2018 Feb 1;73(2):462-468.
  • Relationships for K. pneumoniae FADDI-KP032 between log10 cfu per thigh at 24 h and fAUC/MIC (a) and log10 cfu per lung at 24 h and fAUC/MIC (b). [2]. J Antimicrob Chemother. 2018 Feb 1;73(2):462-468.
Contact Us Back to top