Phloretin

Alias: RJC 02792; NSC 407292; NSC-407292; NSC407292; RJC02792; RJC-02792; Phloretin
Cat No.:V4942 Purity: ≥98%
Phloretin (also known as NSC 407292 and RJC 02792), a naturally occuring dihydrochalcone flavonoid mainly found in fruit, leaves, and roots of apple tree, inhibits a variety of transporters such as the monocarboxylate transporters MCT1 and MCT2 (IC50 = 28 and 14 µM, respectively).
Phloretin Chemical Structure CAS No.: 60-82-2
Product category: SGLT
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
500mg
1g
2g
5g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Phloretin (also known as NSC 407292 and RJC 02792), a naturally occuring dihydrochalcone flavonoid mainly found in fruit, leaves, and roots of apple tree, inhibits a variety of transporters such as the monocarboxylate transporters MCT1 and MCT2 (IC50 = 28 and 14 µM, respectively). Phloretin has anti-inflammatory, anti-tumor, and antioxidant properties in mammalian cells. Phloretin(NSC 407292; RJC 02792) is a dihydrochalcone, a type of natural phenols. Phloretin blocks SGLT1 and SGLT2's ability to actively transport glucose into cells.

Biological Activity I Assay Protocols (From Reference)
Targets
SGLT1; SGLT2; Microbial Metabolite; GLUT1; GLUT2
ln Vitro
Phloretin is a dihydrochalcone that can be found in the bark of fruit trees such as cherries, apples, and pears (Pyrus communis). Phloretin, like its glycoside phlorizin, inhibits the active transport of glucose into cells by SGLT1 and SGLT2, albeit to a lesser extent. [1] In the small intestine, hydrolytic enzymes convert nearly all of the phlorizin taken orally into phloretin. An important effect of this is the inhibition of glucose absorption by the small intestine and the inhibition of renal glucose reabsorption. [2] [3] Additionally, a number of urea transporters are inhibited by phenyletin. When used in conjunction with diets high in protein, it causes diuresis and urea loss. [4]
ln Vivo
Phloretin (methanol; 50 or 100 mg/kg; once daily) reduces hydrogen peroxide and malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels in paw tissue and reduces anticollagen efficacy in serum [animal model : Collagen-induced arthritis (CIA) mice [3] Dosage: 50 or 100 mg/kg Administration method: Oral Results: Compared with traditional drugs, in addition to reducing inflammation in the hind limbs, it also showed relief from clinical symptoms of RA. 3]. control group.
Cell Assay
Cell Line: BEL-7402 cell
Concentration: 40-160 μM
Incubation Time: 24 hours
Result: Induced cell apoptosis and activated caspase 3, 6 and 9.
Animal Protocol
Collagen-Induced Arthritis (CIA) Mice
50 or 100 mg/kg
Oral adminstration
References

[1]. Am J Physiol . 1962 Dec:203:975-9.

[2]. Diabetes Obes Metab . 2009 Feb;11(2):79-88.

[3]. J Nutr . 2001 Dec;131(12):3227-30.

[4]. Proc Natl Acad Sci U S A . 2004 May 11;101(19):7469-74.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C15H14O5
Molecular Weight
274.2687
Exact Mass
274.08
Elemental Analysis
C, 65.69; H, 5.15; O, 29.17
CAS #
60-82-2
Appearance
Solid powder
SMILES
C1=CC(=CC=C1CCC(=O)C2=C(C=C(C=C2O)O)O)O
InChi Key
VGEREEWJJVICBM-UHFFFAOYSA-N
InChi Code
InChI=1S/C15H14O5/c16-10-4-1-9(2-5-10)3-6-12(18)15-13(19)7-11(17)8-14(15)20/h1-2,4-5,7-8,16-17,19-20H,3,6H2
Chemical Name
3-(4-hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)propan-1-one
Synonyms
RJC 02792; NSC 407292; NSC-407292; NSC407292; RJC02792; RJC-02792; Phloretin
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 50~55 mg/mL (182.3~200.5 mM)
Ethanol: ~55 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (9.12 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (9.12 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (9.12 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 5%DMSO + Corn oil: 0.45mg/ml (1.64mM)

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.6460 mL 18.2302 mL 36.4604 mL
5 mM 0.7292 mL 3.6460 mL 7.2921 mL
10 mM 0.3646 mL 1.8230 mL 3.6460 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • The effects of phloretin on the development and clinical of CIA. The effects of phloretin on the development and clinical of CIA.
  • Effect of phloretin on Con A-induced inflammatory cytokine production by splenocytes in vitro. Evid Based Complement Alternat Med . 2016:2016:9831263.
  • Effects of phloretin on anti-CII IgG and CII-specific cell proliferation. Evid Based Complement Alternat Med . 2016:2016:9831263.
Contact Us Back to top