yingweiwo

Pasireotide acetate (SOM-230)

Alias: SOM 230; SOM-230; SOM230; trade name: Signifor; Signifor LAR.
Cat No.:V11675 Purity: ≥98%
Pasireotide acetate (formerly SOM230),the acetate salt of Pasireotide, isa stable cyclohexapeptide somatostatin derivative that exhibits unique high-affinity binding to human somatostatin receptors (subtypes sst1/2/3/4/5, pKi=8.2/9.0/9.1/<7.0/9.9 respectively).
Pasireotide acetate (SOM-230)
Pasireotide acetate (SOM-230) Chemical Structure CAS No.: 396091-76-2
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
Other Sizes

Other Forms of Pasireotide acetate (SOM-230):

  • Pasireotide L-aspartate salt
  • Pasireotide pamoate
  • Pasireotide ditrifluoroacetate (Pasireotide ditrifluoroacetate; SOM230 ditrifluoroacetate; Pasireotide TFA salt)
  • Pasireotide-d7 TFA
  • Pasireotide diaspartate (SOM-230)
  • Pasireotide (SOM-230)
  • Pasireotide)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Pasireotide acetate (formerly SOM230), the acetate salt of Pasireotide, is a stable cyclohexapeptide somatostatin derivative that exhibits unique high-affinity binding to human somatostatin receptors (subtypes sst1/2/3/4/5, pKi=8.2/9.0/9.1/<7.0/9.9 respectively). It is an orphan drug approved for the treatment of Cushing's disease in patients who fail or are ineligible for surgical therapy. It was developed by Novartis. Pasireotide is a somatostatin analogue with a 40-fold increased affinity to somatostatin receptor 5 compared to other somatostatin analogues.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
Pasireotide acetate binds to the human somatostatin receptor (subtype sst1/2/3/4/5, pKi=8.2/9.0/9.1/<7.0/9.9) with a particularly high affinity [1]. GH release in primary cultures of pituitary cells stimulated by growth hormone (GRH) with an IC50 of 0.4 nM [1].
ln Vivo
Pasireotide acetate (160 mg/kg/month; subcutaneously for 4 months) dramatically decreases plasma insulin, boosts plasma plasma levels, reduces tumor growth, and increases Pdx1-Cre cells [2]. Pasireotide acetate (2-50 μg/kg; subcutaneously, twice daily for 42 days) produces analgesic and anti-inflammatory effects via SSTR2 receptors in immune-mediated arthritis models [4].
Animal Protocol
Animal/Disease Models: 12-month-old conditional Men1 gene knockout mice with insulinoma [2]
Doses: 160 mg/kg/oral
Route of Administration: monthly subcutaneous injection for 4 months
Experimental Results: diminished serum insulin from 1.060 μg/L to 0.3653 μg/L, increasing serum glucose from 4.246 mM to 7.122 mM. Dramatically diminished tumor size and increased apoptosis.
Toxicity/Toxicokinetics
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
The excretion of pasireotide into breastmilk has not been studied. However, because it has a high molecular weight of 1047 daltons it is likely to be poorly excreted into breastmilk and it is a peptide that is likely digested in the infant's gastrointestinal tract. It is unlikely to reach the clinically important levels in infant serum. However, the manufacturer states that nursing mothers should not use pasireotide. An alternate drug is preferred.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
References

[1]. A novel somatostatin mimic with broad somatotropin release inhibitory factor receptor binding and superior therapeutic potential. J Med Chem. 2003 Jun 5;46(12):2334-44.

[2]. Pasireotide (SOM230) is effective for the treatment of pancreatic neuroendocrine tumors (PNETs) in a multiple endocrine neoplasia type 1 (MEN1) conditional knockout mouse model. Surgery. 2012 Dec;152(6):1068-77.

[3]. Differential antiinflammatory and antinociceptive effects of the somatostatin analogs octreotide and pasireotide in a mouse model of immune-mediated arthritis. Arthritis Rheum. 2011 Aug;63(8):2352-62.

[4]. Pasireotide (SOM230): development, mechanism of action and potential applications. Mol Cell Endocrinol. 2008 May 14;286(1-2):69-74.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C60H70N10O11
Molecular Weight
1107.26
Exact Mass
1106.522
CAS #
396091-76-2
Related CAS #
Pasireotide L-aspartate salt;396091-77-3;Pasireotide pamoate;396091-79-5;Pasireotide;396091-73-9;Pasireotide (diaspartate);1421446-02-7
PubChem CID
72205932
Appearance
White to off-white solid powder
Hydrogen Bond Donor Count
10
Hydrogen Bond Acceptor Count
13
Rotatable Bond Count
18
Heavy Atom Count
81
Complexity
1970
Defined Atom Stereocenter Count
7
SMILES
CC(=O)O.C1[C@H](CN2[C@@H]1C(=O)N[C@H](C(=O)N[C@@H](C(=O)N[C@H](C(=O)N[C@H](C(=O)N[C@H](C2=O)CC3=CC=CC=C3)CC4=CC=C(C=C4)OCC5=CC=CC=C5)CCCCN)CC6=CNC7=CC=CC=C76)C8=CC=CC=C8)OC(=O)NCCN
InChi Key
WFKFNBBHVLMWQH-QKXVGOHISA-N
InChi Code
InChI=1S/C58H66N10O9.C2H4O2/c59-27-13-12-22-46-52(69)64-47(30-38-23-25-42(26-24-38)76-36-39-16-6-2-7-17-39)53(70)66-49(31-37-14-4-1-5-15-37)57(74)68-35-43(77-58(75)61-29-28-60)33-50(68)55(72)67-51(40-18-8-3-9-19-40)56(73)65-48(54(71)63-46)32-41-34-62-45-21-11-10-20-44(41)45;1-2(3)4/h1-11,14-21,23-26,34,43,46-51,62H,12-13,22,27-33,35-36,59-60H2,(H,61,75)(H,63,71)(H,64,69)(H,65,73)(H,66,70)(H,67,72);1H3,(H,3,4)/t43-,46+,47+,48-,49+,50+,51+;/m1./s1
Chemical Name
(3S,6R,9S,12S,15S,19R,20aS)-6-((1H-indol-3-yl)methyl)-9-(4-aminobutyl)-15-benzyl-12-(4-(benzyloxy)benzyl)-1,4,7,10,13,16-hexaoxo-3-phenylicosahydropyrrolo[1,2-a][1,4,7,10,13,16]hexaazacyclooctadecin-19-yl (2-aminoethyl)carbamate acetate
Synonyms
SOM 230; SOM-230; SOM230; trade name: Signifor; Signifor LAR.
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~90.31 mM)
H2O : ~1 mg/mL (~0.90 mM)
Solubility (In Vivo)
Solubility in Formulation 1: 2.5 mg/mL (2.26 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (2.26 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (2.26 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 2 mg/mL (1.81 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.9031 mL 4.5157 mL 9.0313 mL
5 mM 0.1806 mL 0.9031 mL 1.8063 mL
10 mM 0.0903 mL 0.4516 mL 0.9031 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT01329289 Withdrawn Drug: SOM230
Drug: Bortezomib
Drug: Dexamethasone
Multiple Myeloma
Multiple Myeloma in Relapse
University of Pittsburgh 2011-12 Phase 2
Biological Data
  • Effect of pasireotide (SOM230) on serum insulin (A) and glucose levels (B) in Pdx1-Cre:Men1 floxed/floxed conditional knockout mice with monthly subcutaneous injections of SOM230 (160mg/Kg/month [64mg/ml]) or PBS for four months. *One-way repeated ANOVA was performed on data as long as there were at least 3 mice in each group (i.e., up to and including day 70) †Indicates the occurrence of death (days 68, 74, and 82).[2]. Pasireotide (SOM230) is effective for the treatment of pancreatic neuroendocrine tumors (PNETs) in a multiple endocrine neoplasia type 1 (MEN1) conditional knockout mouse model. Surgery. 2012 Dec;152(6):1068-77.
  • microPET/CT scan and standardized-uptake value (SUV) analysis as a means of visualizing insulinoma responsiveness to monthly subcutaneous injections of pasireotide (SOM230) (160mg/Kg/month [64mg/ml]) or PBS over four months. (A) microPET/CT scan demonstrating the presence of increased metabolism/excretion by normal organs (brain, heart, kidneys, and bladder) and an insulinoma prior to treatment with SOM230 (arrow). (B) microPET/CT scan demonstrating the presence of increased metabolism/excretion by normal organs with decreased activity in the insulinoma following four months treatment with SOM230. (C) SUV measurements for each mouse represented as a percent change in activity beginning from pre-treatment until either death or four months treatment with either SOM230 or PBS (100 × [SUVfinal - SUVpre-treatment]/SUVpre-treatment) *Mice M2, M3, and M4 of the PBS group expired prior to completion of the study (days 68, 74, and 82, respectively).[2]. Pasireotide (SOM230) is effective for the treatment of pancreatic neuroendocrine tumors (PNETs) in a multiple endocrine neoplasia type 1 (MEN1) conditional knockout mouse model. Surgery. 2012 Dec;152(6):1068-77.
  • Assessment of apoptosis in representative pancreata from Pdx1-Cre:Men1 floxed/floxed conditional knockout mice following monthly subcutaneous (SC) injections of PBS or pasireotide (SOM230) (160mg/Kg/month [64mg/ml]) for four months by Terminal deoxynucleotidyl transferase dUTP Nick End-Labeling (TUNEL) assay. (A) Immunofluorescent staining of representative pancreas with insulinoma from the control group receiving monthly SC injections of PBS at the end of four months. Nuclei were visualized via DAPI staining (blue), whereas apoptotic foci were identified by terminal deoxynucleotidyl transferase-mediated addition of fluorescein-dUTP (green). (B) Immunofluorescent staining of representative pancreas with insulinoma from the treatment group receiving monthly SC injections of SOM230 at the end of four months. (C) Quantification was achieved by counting the apoptotic fluorescent cells under a fluorescent microscope (expressed as the percentage of total cells ± standard deviation [SD]).[2]. Pasireotide (SOM230) is effective for the treatment of pancreatic neuroendocrine tumors (PNETs) in a multiple endocrine neoplasia type 1 (MEN1) conditional knockout mouse model. Surgery. 2012 Dec;152(6):1068-77.
Contact Us