yingweiwo

Olaquindox

Alias: Bisergon; Bayonox; Bayernox
Cat No.:V18908 Purity: ≥98%
Olaquindox is a quinoxaline analogue, an orally bioactive antibiotic.
Olaquindox
Olaquindox Chemical Structure CAS No.: 23696-28-8
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
Other Sizes

Other Forms of Olaquindox:

  • Olaquindox-d4 (Olaquindox-d4)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Olaquindox is a quinoxaline analogue, an orally bioactive antibiotic. Olaquindox stimulates growth and reduces intestinal mucosal immunity in piglets.
Biological Activity I Assay Protocols (From Reference)
ln Vivo
Olaquindox (100 mg/kg in the baseline diet) raises the feed conversion ratio (FCR) and average daily growth [1].
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Experiments with (3-1)4C-olaquindox intraduodenally administered to rats with bile duct fistulas suggested that around 18% of the dose was excreted in the bile. Similar findings were made after intravenous dosing. Distribution occurred in a generalized manner throughout the body after oral dosing and most of the radioactivity had disappeared by 24 hours. Autoradiography revealed the highest amount in the rat kidney at 4 hours, indicative of the extent of urinary excretion already noted. Slightly elevated concentrations were also observed in liver, testes, adrenals and hair follicles.
After pigs were given diets containing up to 45 ppm olaquindox for the duration of the fattening period, the highest levels were found in the liver (0.14 ppm) and kidney (0.28 ppm) 6 hours after withdrawal. By 24 hours the levels were below the limit of detection (0.1 ppm). Similar results were noted when pigs were given diets containing 10 ppm olaquindox.
When pigs were dosed at levels in the range of those recommended in use (up to 100 ppm in the diet) for up to 20 weeks, relatively high levels were found in the kidney (around 2000 ppb) with relatively moderate levels in the liver (300 ppb) when the animals were killed six hours after drug withdrawal. When killed 2 days after withdrawal, levels had fallen to below the limits of detection (50 ppb) in liver, kidney and muscle. Pigs given diets containing olaquindox at levels in excess of those recommended (160 or 250 ppm) for up to 4 weeks also had high initial levels in kidney, liver and muscle but these had fallen to below the limits of detection by day 2 after withdrawal.
Olaquindox was rapidly absorbed when given orally to pigs. Over 90% of an oral dose of 2 mg/kg bw was eliminated in the urine within 24 hours, which is indicative of rapid and extensive absorption. The remainder was excreted in the feces. Maximum plasma levels were attained within 1-2 hours of dosing (1-2 ppm). This was followed by a rapid decline in plasma levels reaching around 0.03 ppm by 24 hours and 0.005-0.01 ppm by 48 hours. Radioactivity was present in all tissues when examined 2 days after dosing, but the levels were extremely low. In the kidney and liver, levels of 110 and 52 ppb were found, while levels in muscle were only 9 ppb. After 8 days, levels in liver and kidney had fallen to 27 and 12 ppb, respectively, while those in muscle were in the range of 2.5 ppb. By 28 days after dosing only low levels were found in kidney and muscle (0.9 and 0.5-0.8 ppb, respectively) with slightly higher concentrations in the liver (2 ppb).
For more Absorption, Distribution and Excretion (Complete) data for OLAQUINDOX (6 total), please visit the HSDB record page.
Metabolism / Metabolites
The biotransformation of olaquindox has been investigated only in the pig. The majority of an oral dose of olaquindox (70%) was excreted in the urine unchanged. The major metabolites appeared to be the reduced compounds, the 1- or 4-mono-N-oxides (16%). Three other compounds thought to be carboxylic acid derivatives made up the remainder. Later work led to the elucidation of the structures of these metabolites in the pig. Again the major urinary component after oral dosing was olaquindox with about 7% present as the 4-mono-N-oxide. Omega oxidation produced the 2-carboxymethylaminocarbonyl compound and its 4-mono-N-oxide derivative (6%). Some of the corresponding 1-mono-N-oxide moiety of the 2-carboxymethylaminocarbonyl was also noted (1%). The remaining metabolite was the di-desoxy derivative of 2-carboxymethylaminocarbonyl compound, 2-carboxymethylaminocarbonyl-3- methyl quinoxaline (>1%).
References
[1]. Ding MX, et al. Olaquindox and cyadox stimulate growth and decrease intestinal mucosal immunityof piglets orally inoculated with Escherichia coli. J Anim Physiol Anim Nutr (Berl). 2006 Jun;90(5-6):238-43.
Additional Infomation
Olaquindox [BAN:INN] is a quinoxaline derivative.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C12H13N3O4
Molecular Weight
263.2493
Exact Mass
263.09
CAS #
23696-28-8
Related CAS #
Olaquindox-d4;1189487-82-8
PubChem CID
71905
Appearance
Pale yellow crystals
Density
1.4±0.1 g/cm3
Boiling Point
343.3ºC
Melting Point
209°C (dec.)
Flash Point
>204.4ºC
Index of Refraction
1.651
LogP
-2.2
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
5
Rotatable Bond Count
3
Heavy Atom Count
19
Complexity
421
Defined Atom Stereocenter Count
0
SMILES
O=[N+]1C2=C([H])C([H])=C([H])C([H])=C2N(C(C([H])([H])[H])=C1C(N([H])C([H])([H])C([H])([H])O[H])=O)[O-]
InChi Key
TURHTASYUMWZCC-UHFFFAOYSA-N
InChi Code
InChI=1S/C12H13N3O4/c1-8-11(12(17)13-6-7-16)15(19)10-5-3-2-4-9(10)14(8)18/h2-5,16H,6-7H2,1H3,(H,13,17)
Chemical Name
N-(2-hydroxyethyl)-3-methyl-4-oxido-1-oxoquinoxalin-1-ium-2-carboxamide
Synonyms
Bisergon; Bayonox; Bayernox
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: This product requires protection from light (avoid light exposure) during transportation and storage.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~25 mg/mL (~94.97 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (9.50 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (9.50 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.7987 mL 18.9934 mL 37.9867 mL
5 mM 0.7597 mL 3.7987 mL 7.5973 mL
10 mM 0.3799 mL 1.8993 mL 3.7987 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us