yingweiwo

NIM811

Cat No.:V32871 Purity: ≥98%
NIM811 ((Melle-4)cyclosporin; SDZ NIM811) is an orally bioactive dual (bifunctional) inhibitor of mitochondrial permeability transition (mitochondrial permeability transition) and cyclophilin (cyclophilin), with strong in vitro activity against HCV (hepatitis C virus).
NIM811
NIM811 Chemical Structure CAS No.: 143205-42-9
Product category: New2
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
NIM811 ((Melle-4)cyclosporin; SDZ NIM811) is an orally bioactive dual (bifunctional) inhibitor of mitochondrial permeability transition (mitochondrial permeability transition) and cyclophilin (cyclophilin), with strong in vitro activity against HCV (hepatitis C virus). active.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
In replicon cells, NIM811 reduces HCV RNA in a concentration-dependent manner; at 48 hours, the IC50 value is 0.66 μM. Moreover, NIM811 and α-IFN together markedly increased anti-HCV activity without raising cytotoxicity [1]. abundant with the mitochondrial permeability transition brought on by inorganic phosphate and calcium [2].
ln Vivo
By inhibiting severe mitochondrial degeneration, NIM811 improves liver function and newborn rates while also lessening liver damage and promoting regeneration [3].
References

[1]. NIM811, a cyclophilin inhibitor, exhibits potent in vitro activity against hepatitis C virus alone or in combination with alpha IFN. Antimicrob Agents Chemother. 2006 Sep;50(9):2976-82.

[2]. Inhibition of the mitochondrial permeability transition by the nonimmunosuppressive cyclosporin derivative NIM811. Mol Pharmacol. 2002 Jul;62(1):22-9.

[3]. NIM811 prevents mitochondrial dysfunction, attenuates liver injury, and stimulates liverregeneration after massive hepatectomy. Transplantation. 2011 Feb 27;91(4):406-12.

Additional Infomation
9-(N-methyl-L-isoleucine)-cyclosporin A (NIM811) has been used in trials studying the treatment of Chronic Hepatitis C Genotype-1 Relapse.
(Melle-4)cyclosporin has been reported in Tolypocladium inflatum with data available.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C62H111N11O12
Molecular Weight
1202.61124
Exact Mass
1201.841
CAS #
143205-42-9
PubChem CID
6473876
Appearance
White to off-white solid powder
Density
1.0±0.1 g/cm3
Boiling Point
1293.6±65.0 °C at 760 mmHg
Flash Point
736.2±34.3 °C
Vapour Pressure
0.0±0.6 mmHg at 25°C
Index of Refraction
1.469
LogP
3.35
Hydrogen Bond Donor Count
5
Hydrogen Bond Acceptor Count
12
Rotatable Bond Count
15
Heavy Atom Count
85
Complexity
2330
Defined Atom Stereocenter Count
13
SMILES
CC[C@H]1C(=O)N(CC(=O)N([C@H](C(=O)N[C@H](C(=O)N([C@H](C(=O)N[C@H](C(=O)N[C@@H](C(=O)N([C@H](C(=O)N([C@H](C(=O)N([C@H](C(=O)N([C@H](C(=O)N1)[C@@H]([C@H](C)C/C=C/C)O)C)C(C)C)C)CC(C)C)C)CC(C)C)C)C)C)CC(C)C)C)C(C)C)[C@@H](C)CC)C)C
InChi Key
RPJPZDVUUKWPGT-FOIHOXPVSA-N
InChi Code
InChI=1S/C62H111N11O12/c1-25-28-29-40(15)52(75)51-56(79)65-43(27-3)58(81)67(18)33-47(74)71(22)50(39(14)26-2)55(78)66-48(37(10)11)61(84)68(19)44(30-34(4)5)54(77)63-41(16)53(76)64-42(17)57(80)69(20)45(31-35(6)7)59(82)70(21)46(32-36(8)9)60(83)72(23)49(38(12)13)62(85)73(51)24/h25,28,34-46,48-52,75H,26-27,29-33H2,1-24H3,(H,63,77)(H,64,76)(H,65,79)(H,66,78)/b28-25+/t39-,40+,41-,42+,43-,44-,45-,46-,48-,49-,50-,51-,52+/m0/s1
Chemical Name
(3S,6S,9S,12R,15S,18S,21S,24S,30S,33S)-24-[(2S)-butan-2-yl]-30-ethyl-33-[(E,1R,2R)-1-hydroxy-2-methylhex-4-enyl]-1,4,7,10,12,15,19,25,28-nonamethyl-6,9,18-tris(2-methylpropyl)-3,21-di(propan-2-yl)-1,4,7,10,13,16,19,22,25,28,31-undecazacyclotritriacontane-2,5,8,11,14,17,20,23,26,29,32-undecone
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~170 mg/mL (~141.36 mM)
Solubility (In Vivo)
Solubility in Formulation 1: 5 mg/mL (4.16 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 50.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 5 mg/mL (4.16 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 50.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

View More

Solubility in Formulation 3: 2.5 mg/mL (2.08 mM) in 5% DMSO + 40% PEG300 + 5% Tween80 + 50% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.8315 mL 4.1576 mL 8.3152 mL
5 mM 0.1663 mL 0.8315 mL 1.6630 mL
10 mM 0.0832 mL 0.4158 mL 0.8315 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us