yingweiwo

N8-Acetylspermidine dihydrochloride

Alias: N8-Acetylspermidine; N(8)-acetylspermidine; N-[4-(3-aminopropylamino)butyl]acetamide; CHEBI:27911; DTXSID60158637; N-[4-[(3-aminopropyl)amino]butyl]-Acetamide; 34450-15-2; N-(4-(3-aminopropylamino)butyl)acetamide;
Cat No.:V30824 Purity: ≥98%
N8-Acetylspermidine diHCl is a polyamine substance.
N8-Acetylspermidine dihydrochloride
N8-Acetylspermidine dihydrochloride Chemical Structure CAS No.: 34450-15-2
Product category: New2
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
N8-Acetylspermidine diHCl is a polyamine substance.
Biological Activity I Assay Protocols (From Reference)
Targets
Endogenous Metabolite
ln Vivo
Complete inhibition of polyamine catabolism is possible by combined administration of two compounds. Aminoguanidine (25 mg/kg body wt., intraperitoneally) inhibits all reactions that are catalysed by copper-containing amine oxidases (CuAO). The products of the CuAO-catalysed reactions cannot be reconverted into polyamines (terminal catabolism) and therefore usually escape observation. N1-Methyl-N2-(buta-2,3-dienyl)butane-1,4-diamine (MDL 72521) is a new inhibitor of polyamine oxidase. It inhibits completely the degradation of N1-acetylspermidine and N1-acetylspermine. The enhanced excretion of N1-acetylspermidine in urine after administration of 20 mg of MDL 72521/day per kg body wt. is a measure of the rate of spermidine degradation in vivo to putrescine, and thus of the quantitative significance of the interconversion pathway. From the enhancement of total polyamine excretion by aminoguanidine-treated rats, one can calculate that only about 40% of the polyamines that are destined for elimination are usually observed in the urine, the other 60% being catabolized along the CuAO-catalysed pathways. The normally observed urinary polyamine pattern gives, therefore, an unsatisfactory picture of the actual polyamine elimination. Although aminoguanidine alone is sufficient to block terminal polyamine catabolism, rats that were treated with a combination of aminoguanidine and MDL 72521 excrete more polyamines than those that received aminoguanidine alone. The reason is that a certain proportion of putrescine, which is formed by degradation of spermidine, is normally reutilized for polyamine biosynthesis. In MDL 72521-treated animals this proportion appears in the urine in the form of N1-acetylspermidine. Thus it is possible to determine polyamine interconversion and re-utilization in vivo and to establish a polyamine balance in intact rats by using specific inhibitors of the CuAO and of polyamine oxidase. [1]
References

[1]. The influence of catabolic reactions on polyamine excretion. Biochem J. 1985 Jan 1;225(1):219-26.

Additional Infomation
N(8)-acetylspermidine is an acetylspermidine that is 1,8-diamino-4-azaoctane in which one of the hydrogens of the amino group attached to C-8 is replaced by an acetyl group. It has a role as a human metabolite and an Escherichia coli metabolite. It is a conjugate base of a N(8)-acetylspermidinium(2+).
N8-Acetylspermidine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
N8-Acetylspermidine has been reported in Homo sapiens, Bos taurus, and other organisms with data available.
N8-Acetylspermidine is a metabolite found in or produced by Saccharomyces cerevisiae.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C9H21N3O.2[HCL]
Molecular Weight
260.20442
Exact Mass
259.122
CAS #
34450-15-2
Related CAS #
34450-15-2 (di-hydrochloride)
PubChem CID
123689
Appearance
White to off-white solid powder
Density
0.957g/cm3
Boiling Point
383.2ºC at 760mmHg
Melting Point
202 - 203 °C
Flash Point
185.5ºC
LogP
3.376
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
3
Rotatable Bond Count
8
Heavy Atom Count
13
Complexity
128
Defined Atom Stereocenter Count
0
SMILES
CC(NCCCCNCCCN)=O.Cl.Cl
InChi Key
FONIWJIDLJEJTL-UHFFFAOYSA-N
InChi Code
InChI=1S/C9H21N3O/c1-9(13)12-8-3-2-6-11-7-4-5-10/h11H,2-8,10H2,1H3,(H,12,13)
Chemical Name
N-[4-(3-aminopropylamino)butyl]acetamide
Synonyms
N8-Acetylspermidine; N(8)-acetylspermidine; N-[4-(3-aminopropylamino)butyl]acetamide; CHEBI:27911; DTXSID60158637; N-[4-[(3-aminopropyl)amino]butyl]-Acetamide; 34450-15-2; N-(4-(3-aminopropylamino)butyl)acetamide;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~384.32 mM)
H2O : ~50 mg/mL (~192.16 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (9.61 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (9.61 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (9.61 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 100 mg/mL (384.32 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.8432 mL 19.2160 mL 38.4320 mL
5 mM 0.7686 mL 3.8432 mL 7.6864 mL
10 mM 0.3843 mL 1.9216 mL 3.8432 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us