yingweiwo

Myristic acid

Cat No.:V30210 Purity: ≥98%
Myristic acid is a saturated 14-carbon fatty acid found in most animal and vegetable fats, especially butterfat and coconut, palm, and nutmeg oils.
Myristic acid
Myristic acid Chemical Structure CAS No.: 544-63-8
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
100mg
10g
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Myristic acid is a saturated 14-carbon fatty acid found in most animal and vegetable fats, especially butterfat and coconut, palm, and nutmeg oils.
Biological Activity I Assay Protocols (From Reference)
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
IN NORMAL RATS, HIGHER RADIOACTIVITY WAS FOUND IN HEART, LIVER, SPLEEN & ADRENALS 2 HR AFTER ADMIN OF PALMITIC ACID THAN AFTER ADMIN OF MYRISTIC ACID. IN GRANULOMA POUCH-BEARING RATS, RADIOACTIVITY SHOWED HIGHER DISTRIBUTION IN ADRENALS & POUCH EXUDATE 2 HR AFTER PALMITIC ACID ADMIN, COMPARED TO THOSE GIVEN MYRISTIC ACID. RADIOACTIVITY IN THE POUCH WALL WAS GREATER IN RATS GIVEN MYRISTIC ACID.
Fatty acids originating from adipose tissue stores are either bound to serum albumin or remain unesterified in the blood.
Oleic, Palmitic, Myristic, and Stearic Acids are primarily transported via the lymphatic system, and Lauric Acid is transported by the lymphatic and (as a free fatty acid) portal systems.
Metabolism / Metabolites
IN RATS FED COCONUT OIL, MYRISTIC ACID WAS ONE OF THE PRINCIPAL FATTY ACIDS PRESENT IN HEPATIC AND ADIPOSE TISSUE TRIGLYCERIDES. ETHANOL INCR THE PROPORTIONS OF MYRISTIC ACID.
IN ADDITION TO METABOLISM BY BETA-OXIDATION, MYRISTIC ACID HAS BEEN SHOWN TO UNDERGO CHAIN ELONGATION TO PALMITIC & STEARIC ACIDS, DESATURATION TO MYRISTOLEIC ACID & INCORPORATION INTO HEPATIC NEUTRAL LIPIDS (& TO A LESSER EXTENT, PHOSPHOLIPIDS).
THE CONVERSION OF SATURATED FATTY ACIDS TO MONOUNSATURATED FATTY ACIDS BY THE 9000 X G SUPERNATANT RAT LIVER HOMOGENATE WAS LESS FOR MYRISTIC ACID THAN FOR PALMITIC ACID. THESE FATTY ACIDS PRODUCED ONLY DELTA9-MONOENOIC ACIDS OF THE SAME CHAIN LENGTH.
MYRISTATE INCORPORATED FROM (14)C-LABELED ACETATE WAS PREFERENTIALLY ESTERIFIED INTO TRIGLYCERIDE, WHEREAS THE LABELED STEARATE WAS CONVERTED INTO PHOSPHOLIPIDS IN THE ISOLATED RAT ADIPOSE CELLS.
For more Metabolism/Metabolites (Complete) data for MYRISTIC ACID (6 total), please visit the HSDB record page.
Tetradecanoic acid has known human metabolites that include 13-Hydroxytetradecanoic acid.
References

[1]. Myristic acid regulates triglyceride production in bovine mammary epithelial cells through the ubiquitination pathway. Agriculture, 2023, 13(10): 1870.

[2]. Myristic Acid Inhibits the Activity of the Bacterial ABC Transporter BmrA. Int J Mol Sci. 2021 Dec 17;22(24):13565.

[3]. Myristic acid reduces skin inflammation and nociception. J Food Biochem. 2022 Jan;46(1):e14013.

[4]. Anti-inflammatory effects of myristic acid mediated by the NF-κB pathway in lipopolysaccharide-induced BV-2 microglial cells. Mol Omics. 2023 Oct 30;19(9):726-734.

Additional Infomation
Tetradecanoic acid is an oily white crystalline solid. (NTP, 1992)
Tetradecanoic acid is a straight-chain, fourteen-carbon, long-chain saturated fatty acid mostly found in milk fat. It has a role as a human metabolite, an EC 3.1.1.1 (carboxylesterase) inhibitor, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a tetradecanoate.
Myristic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Myristic acid has been reported in Calodendrum capense, Camellia sinensis, and other organisms with data available.
Myristic Acid is a saturated long-chain fatty acid with a 14-carbon backbone. Myristic acid is found naturally in palm oil, coconut oil and butter fat.
Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed). Myristic acid is also commonly added to a penultimate nitrogen terminus glycine in receptor-associated kinases to confer the membrane localisation of the enzyme. this is achieved by the myristic acid having a high enough hydrophobicity to become incorporated into the fatty acyl core of the phospholipid bilayer of the plasma membrane of the eukaryotic cell.(wikipedia).
myristic acid is a metabolite found in or produced by Saccharomyces cerevisiae.
A saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed)
See also: Cod Liver Oil (part of); Saw Palmetto (part of).
Mechanism of Action
... The specific hypothesis tested was that free fatty acid association with CD36, a class B scavenger receptor, induces the activation of endothelial nitric-oxide synthase (eNOS). A human microvascular endothelial cell line and a transfected Chinese hamster ovary cell system were used to determine which free fatty acids stimulate eNOS. Surprisingly, only myristic acid, and to a lesser extent palmitic acid, stimulated eNOS. The stimulation of eNOS was dose- and time-dependent. Competition experiments with other free fatty acids and with a CD36-blocking antibody demonstrated that the effects of myristic acid on eNOS required association with CD36. Further mechanistic studies demonstrated that the effects of myristic acid on eNOS function were not dependent on PI 3-kinase, Akt kinase, or calcium. Pharmacological studies and dominant negative constructs were used to demonstrate that myristic acid/CD36 stimulation of eNOS activity was dependent on the activation of AMP kinase. These data demonstrate an unexpected link among myristic acid, CD36, AMP kinase, and eNOS activity.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C14H28O2
Molecular Weight
228.3709
Exact Mass
228.208
CAS #
544-63-8
PubChem CID
11005
Appearance
White to off-white solid powder
Density
0.9±0.1 g/cm3
Boiling Point
319.6±5.0 °C at 760 mmHg
Melting Point
52-54 °C(lit.)
Flash Point
144.8±12.5 °C
Vapour Pressure
0.0±0.7 mmHg at 25°C
Index of Refraction
1.451
LogP
6.09
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
2
Rotatable Bond Count
12
Heavy Atom Count
16
Complexity
155
Defined Atom Stereocenter Count
0
InChi Key
TUNFSRHWOTWDNC-UHFFFAOYSA-N
InChi Code
InChI=1S/C14H28O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14(15)16/h2-13H2,1H3,(H,15,16)
Chemical Name
tetradecanoic acid
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ≥ 250 mg/mL (~1094.71 mM)
Ethanol : ~100 mg/mL (~437.89 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (10.95 mM) (saturation unknown) in 10% EtOH + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear EtOH stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (10.95 mM) (saturation unknown) in 10% EtOH + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear EtOH stock solution to 900 μL of corn oil and mix evenly.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (9.11 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.


Solubility in Formulation 4: ≥ 2.08 mg/mL (9.11 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.



Solubility in Formulation 5: 10% DMSO + 90% Corn Oil

Solubility in Formulation 6: 40 mg/mL (175.15 mM) in Cremophor EL (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 4.3789 mL 21.8943 mL 43.7886 mL
5 mM 0.8758 mL 4.3789 mL 8.7577 mL
10 mM 0.4379 mL 2.1894 mL 4.3789 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us