yingweiwo

mTOR inhibitor-3

Cat No.:V33591 Purity: ≥98%
mTOR inhibitor-3 is a potent mTOR inhibitor (antagonist) with Ki of 1.5 nM.
mTOR inhibitor-3
mTOR inhibitor-3 Chemical Structure CAS No.: 1207358-59-5
Product category: New2
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
50mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
mTOR inhibitor-3 is a potent mTOR inhibitor (antagonist) with Ki of 1.5 nM. mTOR inhibitor-3 inhibits mTORC1 and mTORC2 in both cellular experiments and in vivo pharmacokinetic (PK)/pharmacodynamic (PD) experiments.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
mTOR inhibitor-3 (compound 12i) has a 500-fold selectivity over the closely related PI3 kinase and inhibits mTOR with a Ki of 1.5 nM. NCI-PC3 and MCF7neo/Her2 cell growth is inhibited by mTOR inhibitor-3, with IC50 values of 150 nM and 57 nM, respectively[2].
ln Vivo
Mice (1818 mL/min/kg) and rats (1538 mL/min/kg) exhibit high free plasma clearance for mTOR inhibitor-3 (compound 8h) [1]. For this investigation, mTOR inhibitor-3 (compound 12i) was chosen because of its potency, selectivity, and favorable mouse PK characteristics. Six hours after oral dosing, plasma levels of mTOR inhibitor-3 and phosphorylated mTORC1 and -2 substrates were factor lower in PC3 tumor-bearing mice compared to time-matched vehicle controls. With a dose of 1 mg/kg intraperitoneally in mice, mTOR inhibitor-3 has an intermediate terminal elimination half-life (t1/2=1.7 hours). At the highest dose tested, 200 mg/kg/day, mTOR inhibitor-3 produced tumor arrest; this dose also seems to be near the molecule's tolerance limit [2].
References

[1]. Discovery and Biological Profiling of Potent and Selective mTOR Inhibitor GDC-0349. ACS Med Chem Lett. 2012 Nov 29;4(1):103-7.

[2]. Potent, selective, and orally bioavailable inhibitors of the mammalian target of rapamycin kinase domain exhibiting single agent antiproliferative activity. J Med Chem. 2012 Dec 27;55(24):10958-71.

Additional Infomation
mTOR Inhibitor is any substance that inhibits mammalian target of rapamycin (mTOR or FK506 binding protein 12-rapamycin associated protein 1 (FRAP1)), a serine/threonine protein kinase that is active in the control of cell growth, cell proliferation, and cell motility. Inhibition of mTOR can inhibit cell proliferation.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C25H30N8O2
Molecular Weight
474.558104038239
Exact Mass
474.249
CAS #
1207358-59-5
PubChem CID
59239114
Appearance
White to off-white solid powder
LogP
3.27
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
8
Rotatable Bond Count
5
Heavy Atom Count
35
Complexity
684
Defined Atom Stereocenter Count
1
SMILES
CCNC(=O)NC1=CC=C(C=C1)C2=NC3=C(CCN(C3)C4=NC=CC=N4)C(=N2)N5CCOC[C@@H]5C
InChi Key
WQBAZXIQANTUOY-KRWDZBQOSA-N
InChi Code
InChI=1S/C25H30N8O2/c1-3-26-25(34)29-19-7-5-18(6-8-19)22-30-21-15-32(24-27-10-4-11-28-24)12-9-20(21)23(31-22)33-13-14-35-16-17(33)2/h4-8,10-11,17H,3,9,12-16H2,1-2H3,(H2,26,29,34)/t17-/m0/s1
Chemical Name
1-ethyl-3-[4-[4-[(3S)-3-methylmorpholin-4-yl]-7-pyrimidin-2-yl-6,8-dihydro-5H-pyrido[3,4-d]pyrimidin-2-yl]phenyl]urea
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~50 mg/mL (~105.36 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (5.27 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (5.27 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.1072 mL 10.5361 mL 21.0722 mL
5 mM 0.4214 mL 2.1072 mL 4.2144 mL
10 mM 0.2107 mL 1.0536 mL 2.1072 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us