yingweiwo

MRTX-9768

Cat No.:V41676 Purity: ≥98%
MRTX9768 is a potent, selective, orally bioactive, first-in-class inhibitor of the PRMT5-MTA complex.
MRTX-9768
MRTX-9768 Chemical Structure CAS No.: 2629314-68-5
Product category: New3
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
50mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
MRTX9768 is a potent, selective, orally bioactive, first-in-class inhibitor of the PRMT5-MTA complex.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
MRTX9768 (0-250 nM) Results LU99 SDMA maintained clearance for 4 days after 3 hours of drug treatment (exhibiting cleft binding and prolonged PRMT5·MTA occupancy). MRTX9768 inhibits SDMA and cell proliferation in HCT116 MTAP-del cells (SDMA IC50 3 nM; proliferation IC50 11 nM) with significant cycling in HCT116 MTAP-WT cells (SDMA IC50 544 nM; IC50 861 nM) [1].
ln Vivo
In xenograft experiments, ischemia models with MRTX9768 exhibited fold suppression of SDMA in MTAP-del tumors, with variable SDMA regulation found in the bone marrow [1]. MRTX9768 (model dosages of 30 mg/kg in CD-1 mice and beagle dogs and 10 mg/kg in cynomolgus monkeys) had a favorable ADME profile. Tumors (such as astroblastoma)[1][2]. (>50% bioavailability in mice and dogs, moderate to high clearance, no change in RBC parameters up to effective concentration (1000 mg/kg)) [3]. MRTX9768 (100 mg/kg). , barrier, BID, 6/21 days) results in SDMA inhibition maintained for 3 days after termination [3].
References

[1]. Fragment based discovery of MRTX9768, a synthetic lethal-based inhibitor designed to bind the PRMT5-MTA complex and selectively target MTAP/CDKN2A-deleted tumors [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr LB003.

[2]. Targeting protein arginine methyltransferase 5 in cancers: Roles, inhibitors and mechanisms. Biomed Pharmacother. 2021 Oct 4;144:112252.

[3]. Fragment-based discovery of MRTX9768, a synthetic lethal- based inhibitor designed to bind the PRMT5•MTA complex and selectively target MTAPDEL tumors. AACR ANNUAL MEETING 2021:APRIL 10-15, 2021 AND MAY 17-21, 2021.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C24H17FN6O
Molecular Weight
424.429787397385
Exact Mass
424.144
CAS #
2629314-68-5
Related CAS #
MRTX9768 hydrochloride
PubChem CID
156151804
Appearance
White to light brown solid powder
LogP
2.8
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
3
Heavy Atom Count
32
Complexity
810
Defined Atom Stereocenter Count
0
SMILES
FC1=CC2C=CC=CC=2C(C#N)=C1C1=C(C=NN1C)C1C=CC2C(NN=C(CN)C=2C=1)=O
InChi Key
BPTYWAYMKBEXES-UHFFFAOYSA-N
InChi Code
InChI=1S/C24H17FN6O/c1-31-23(22-18(10-26)15-5-3-2-4-13(15)9-20(22)25)19(12-28-31)14-6-7-16-17(8-14)21(11-27)29-30-24(16)32/h2-9,12H,11,27H2,1H3,(H,30,32)
Chemical Name
2-[4-[4-(aminomethyl)-1-oxo-2H-phthalazin-6-yl]-2-methylpyrazol-3-yl]-3-fluoronaphthalene-1-carbonitrile
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: This product requires protection from light (avoid light exposure) during transportation and storage.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~50 mg/mL (~117.81 mM)
Solubility (In Vivo)
Solubility in Formulation 1: 2.5 mg/mL (5.89 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: 2.5 mg/mL (5.89 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (5.89 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.3561 mL 11.7805 mL 23.5610 mL
5 mM 0.4712 mL 2.3561 mL 4.7122 mL
10 mM 0.2356 mL 1.1781 mL 2.3561 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us