Mito-TEMPO

Cat No.:V33197 Purity: ≥98%
Mito-TEMPO is a mitochondria-targeted superoxide dismutase mimetic with the ability to scavenge superoxide and alkyl radicals.
Mito-TEMPO Chemical Structure CAS No.: 1334850-99-5
Product category: New2
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
50mg
100mg
Other Sizes

Other Forms of Mito-TEMPO:

  • MitoTEMPO hydrate
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Mito-TEMPO is a mitochondria-targeted superoxide dismutase mimetic with the ability to scavenge superoxide and alkyl radicals.
Biological Activity I Assay Protocols (From Reference)
Targets
mitochondria-targeted superoxide dismutase mimetic
ln Vitro
Mito-tempo (MT) is a mitochondria-targeted superoxide dismutase mimetic that protects against the early phase of acetaminophen (APAP) hepatotoxicity by inhibiting peroxynitrite formation.
ln Vivo
At both time points, Mito-TEMPO (MT) significantly inhibited the rise in ALT activity and decreased the necrotic region, suggesting that Mito-TEMPO's protection persisted for at least 24 hours following APAP. In the latter phases of APAP hepatotoxicity, Mito-Tempo can cause secondary apoptosis. By blocking RIP3, Mito-Tempo causes secondary apoptosis in response to excessive APAP[1].
Enzyme Assay
Caspase activity measurements and western blotting
Liver caspase activity was measured as described (Lawson et al. 1999). In brief, frozen liver tissue was homogenized in 25 mM HEPES buffer containing 5 mM EDTA, 2 mM DTT and 0.1% CHAPS, and then centrifuged to get the homogenate. A fluorogenic substrate (Ac-DEVD-AFC) was added to the homogenate and fluorescence was measured with or without the presence of pan-caspase inhibitor (z-VAD-fmk). Results are expressed as RFU per unit time per mg protein concentration. Western blotting was performed as described (Bajt et al. 2000) using a rabbit anti-caspase 3 antibody and a rabbit anti-beta-actin antibody, and an anti-RIP3 antibody. The proteins were visualized using a goat anti-rabbit HRP conjugated antibody.
Animal Protocol
Animals
Male C57BL/6J mice (Jackson Laboratories, Bar Harbor, ME) 8-12 weeks of age were kept in an environmentally controlled room with a 12h light/dark cycle. RIP3-deficient mice (C57BL/6N background) were kindly provided by Dr. Vishva Dixit (Genentech, Inc). C57BL/6N wild type animals were from Charles River, Frederick, Maryland, USA). The mice were acclimated before experiments with free access to diet and water. All experimental protocols followed the criteria of the National Research Council for the care and use of laboratory animals and were approved by the Institutional Animal Care and Use Committee of the University of Kansas Medical Center.
Experimental design
Overnight fasted mice (16-18h) were treated i.p. with 300 mg/kg APAP (Sigma-Aldrich, St. Louis, MO) dissolved in warm saline. Some mice were treated with 200mg/kg APAP in experiments evaluating effect of RIP3 deficiency. A dose of 20 mg/kg Mito-Tempo dissolved in saline was administered i.p. 1.5 or 3 h after APAP. Some mice were subsequently treated (i.p.) with 10 mg/kg Z-VD fmk (EP1013; a generous gift from Dr. S.X. Cai, Epicept Corp., San Diego, CA) dissolved in Tris-buffered saline or vehicle 2 h after APAP. To mimic the clinical care of APAP-overdose patients, some mice received the antidote NAC (i.p., 500 mg/kg) at 1.5 or 3 h after APAP overdose. Groups of mice were euthanized at 0-24 h post-APAP by exsanguination under isoflurane anesthesia. Additional mice were treated i.p. with 100 μg/kg Salmonella abortus equi endotoxin (ET) and 700 mg/kg galactosamine (Gal) for 6 h. Blood was drawn into a heparinized syringe and centrifuged to obtain plasma. Plasma ALT activities were measured using the ALT assay kit from Pointe Scientific, MI. The liver tissue was cut into pieces and fixed in 10% phosphate-buffered formalin for histology or flash frozen in liquid nitrogen and subsequently stored at −80°C.
In vivo morpholino treatment
All vivo-morpholinos were from Gene Tools, LLC (Philomath, OR, USA). The antisense sequence used for RIP3 was 5’-TAGGCCATAACTTGACAGAAGACAT-3’. The standard control in vivo oligo sequence from Gene Tools was used for all control morpholino treatments. Morpholinos were used as provided by the manufacturer and administered ip to mice (12.5 mg/kg body weight) every 24h for 2 days. Treatment with APAP was then done on day 3.
References
[1]. Du K, et al. Mito-tempo protects against acute liver injury but induces limited secondary apoptosis during the late phase of acetaminophen hepatotoxicity. Arch Toxicol. 2018 Oct 15
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C29H36CLN2O2P
Molecular Weight
511.03510761261
Exact Mass
510.22029
Elemental Analysis
C, 68.16; H, 7.10; Cl, 6.94; N, 5.48; O, 6.26; P, 6.06
CAS #
1334850-99-5
Related CAS #
MitoTEMPO hydrate;1569257-94-8
Appearance
Light yellow to pink solid powder
tPSA
52.6Ų
SMILES
[Cl-].[P+](C1C=CC=CC=1)(C1C=CC=CC=1)(C1C=CC=CC=1)CC(NC1CC(C)(C)N(C(C)(C)C1)O)=O
InChi Key
QJEOOHMMSUBNGG-UHFFFAOYSA-N
InChi Code
InChI=1S/C29H35N2O2P.ClH/c1-28(2)20-23(21-29(3,4)31(28)33)30-27(32)22-34(24-14-8-5-9-15-24,25-16-10-6-11-17-25)26-18-12-7-13-19-26;/h5-19,23,33H,20-22H2,1-4H3;1H
Chemical Name
[2-[(1-Hydroxy-2,2,6,6-tetramethylpiperidin-4-yl)amino]-2-oxoethyl]-triphenylphosphanium Chloride
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~125 mg/mL (~245.08 mM)
H2O : ~60 mg/mL (~117.64 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.25 mg/mL (4.41 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 22.5 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.25 mg/mL (4.41 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 22.5 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.25 mg/mL (4.41 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 22.5 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: ≥ 2.2 mg/mL (4.4 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + + 45% Saline
≥ 2.2 mg/mL (4.4 mM) in 10% DMSO + 90% (20% SBE-β-CD in saline)
≥ 2.2 mg/mL (4.4 mM) in 10% DMSO + 90% Corn oil


Solubility in Formulation 5: 50 mg/mL (98.03 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.9568 mL 9.7840 mL 19.5679 mL
5 mM 0.3914 mL 1.9568 mL 3.9136 mL
10 mM 0.1957 mL 0.9784 mL 1.9568 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top