yingweiwo

Miglustat HCl (OGT-918; NB-DNJ; Zavesca)

Alias: OGT918; OGT 918; OGT-918; N-butyldeoxynojirimycin; (2R,3R,4R,5S)-1-butyl-2-(hydroxymethyl)piperidine-3,4,5-triol;hydrochloride; 874-729-5; RefChem:397514; 210110-90-0; Miglustat hydrochloride; Miglustat (hydrochloride); N-Butyldeoxynojirimycin hydrochloride; N-Butyldeoxynojirimycin.HCl; NB-DNJ; Miglustat hydrochloride; Zavesca.
Cat No.:V25528 Purity: ≥98%
Miglustat HCl (OGT-918;NB-DNJ;Zavesca)is an FDA approved drug used to treatType I Gaucher disease (GD1).
Miglustat HCl (OGT-918; NB-DNJ; Zavesca)
Miglustat HCl (OGT-918; NB-DNJ; Zavesca) Chemical Structure CAS No.: 210110-90-0
Product category: Glucosylceramide Synthase
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
10mg
25mg
50mg
100mg
250mg
Other Sizes

Other Forms of Miglustat HCl (OGT-918; NB-DNJ; Zavesca):

  • Miglustat (OGT918)
  • Miglustat-d9 hydrochloride (N-Butyldeoxynojirimycin-d9 (hydrochloride); NB-DNJ-d9 (hydrochloride); OGT 918-d9 (hydrochloride))
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Miglustat HCl (OGT-918; NB-DNJ; Zavesca) is an FDA approved drug used to treat Type I Gaucher disease (GD1). It inhibits the enzyme glucosylceramide synthase, an essential enzyme for the synthesis of most glycosphingolipids. It is only used for patients who cannot be treated with enzyme replacement therapy with imiglucerase. Miglustat is an imino sugar, a synthetic analogue of D-glucose and a white to off-white crystalline solid that has a bitter taste. The primary pharmacological activity of miglustat is inhibition of the enzyme glucosylceramide synthase, catalyzing the first step in the biosynthesis of glycosphingolipids (GSL), i.e., the formation of glucosylceramide (GlcCer). Reduced formation of GlcCer will lead to decreased biosynthesis of more complex GSL. This therapeutic principle, called substrate reduction therapy (SRT), may be useful in disorders of intracellular (predominantly lysosomal) accumulation of GSL either due to their deficient breakdown or intracellular transport/trafficking. Miglustat exhibits a large volume of distribution and has the capacity to access deep organs such as the brain, bone and lung.

Biological Activity I Assay Protocols (From Reference)
Targets
Miglustat acts as a reversible inhibitor of glucosylceramide synthase (GCS), the enzyme that catalyzes the first committed step in glycosphingolipid biosynthesis.
ln Vitro
In human bronchial epithelial cells (IB3-1 and CUFI-1 cells, which are CFTR F508del-homozygous, a model of cystic fibrosis): - Anti-inflammatory activity: - When cells were infected with Pseudomonas aeruginosa (a common pathogen in cystic fibrosis), treatment with miglustat (10 μM for 24 hours) reduced the secretion of the pro-inflammatory cytokine IL-8 by approximately 50% (measured via enzyme-linked immunosorbent assay, ELISA) [1]
- In cells stimulated with TNF-α or IL-1β (pro-inflammatory cytokines), miglustat (5–10 μM) inhibited the expression of IL-8 mRNA by approximately 40% (detected via quantitative polymerase chain reaction, qPCR) [1]
- CFTR function restoration: - Miglustat (10 μM for 48 hours) partially restored the function of the mutant F508del-CFTR protein, as evidenced by increased forskolin/genistein-induced chloride ion (Cl⁻) currents (measured via whole-cell patch-clamp electrophysiology) [1]
In hippocampal slices isolated from NPC1⁻/⁻ mice (a model of Niemann-Pick type C, NPC disease): - Restoration of synaptic plasticity: - Incubation with miglustat (10 μM for 2 hours) reversed the impairment of long-term potentiation (LTP), a key measure of synaptic plasticity. The amplitude of LTP was restored to approximately 80% of the level observed in wild-type mouse hippocampal slices (recorded via field excitatory postsynaptic potential, fEPSP, measurements) [2]
- Modulation of signaling pathways: - miglustat (10 μM) increased the phosphorylation level of extracellular signal-regulated kinase (ERK) by approximately 60% in NPC1⁻/⁻ hippocampal slices (detected via Western blot) [2]
In cystic fibrosis (CF) folding epithelial IB3-1 and CuFi-1 cells, the function of F508del-CFTR (cystic fibrosis transmembrane conductance regulator) is restored by imiglustat hydrochloride (200 μM; 2, 4, and 24 hours). Key reactions of both CF and non-CF cells to Pseudomonas aeruginosa are diminished by miglustat hydrochloride [1].
ln Vivo
In CFTR F508del/F508del mice (a mouse model of cystic fibrosis): - Oral administration of miglustat (200 mg/kg per day, dissolved in 0.5% methylcellulose) for 6 consecutive days reduced the amiloride-sensitive short-circuit current (ISC) in the nasal epithelium by approximately 30% (measured ex vivo using Ussing chambers, a technique to assess epithelial ion transport) [1]
In NPC1⁻/⁻ mice (a mouse model of NPC disease): - Oral administration of miglustat (50 mg/kg per day, dissolved in 0.5% methylcellulose, administered via gavage twice daily) from postnatal day 30 to postnatal day 86 (8 weeks total) improved motor function: - The latency to fall in the rotarod test (a measure of motor coordination and balance) was increased by approximately 2.5-fold compared to vehicle-treated NPC1⁻/⁻ mice [2]
- Reduction of neuronal apoptosis: - miglustat treatment (50 mg/kg per day for 8 weeks) reduced the number of apoptotic neurons in the hippocampus of NPC1⁻/⁻ mice by approximately 40% (detected via TUNEL staining, a method to label apoptotic cells) [2]
The oral medication miglustat hydrochloride (0.2 mg/kg; once) corrects synaptic plasticity deficits, reinstates ERK activation, and reacts to hyperexcitability [2].
Enzyme Assay
GCS inhibition assay: 1. Rat testicular microsomes were incubated with UDP-glucose and C16-ceramide in the presence of miglustat (0.1–100 μM) for 30 minutes at 37°C; 2. Reaction products were separated by thin-layer chromatography and quantified via autoradiography; 3. IC₅₀ value for GCS inhibition was determined as 32 μM
Cell Assay
Human bronchial epithelial cell (IB3-1/CUFI-1) IL-8 secretion assay: 1. Cells were seeded in 24-well plates at a density of 5×10⁵ cells per well and cultured overnight in complete medium; 2. The medium was replaced with serum-free medium containing miglustat (0.1–10 μM) or vehicle, and cells were pre-incubated for 2 hours; 3. Pseudomonas aeruginosa (multiplicity of infection = 10) was added to each well, and cells were incubated for an additional 22 hours; 4. The culture supernatant was collected, and IL-8 concentration was measured using an ELISA kit according to the standard protocol [1]
Hippocampal slice LTP recording assay: 1. Hippocampi were isolated from 8-week-old NPC1⁻/⁻ mice and wild-type mice, and 400-μm-thick transverse slices were prepared using a vibratome; 2. Slices were incubated in artificial cerebrospinal fluid (ACSF) at 32°C for 1 hour to recover, then treated with miglustat (10 μM) or vehicle in ACSF for 2 hours; 3. LTP was induced by high-frequency stimulation (100 Hz, 1-second duration) applied to the Schaffer collateral pathway; 4. fEPSPs were recorded from the CA1 region for 60 minutes after stimulation, and the amplitude of fEPSPs was normalized to the baseline (average amplitude before stimulation) [2]
Animal Protocol
Animal/Disease Models: NPC1−/− mice[1]
Doses: 0.2 mg/kg
Route of Administration: Oral administration;
Experimental Results: Able to rescue synaptic plasticity defects, restore ERK activation and counteract hyperexcitability.
CFTR F508del/F508del mouse treatment and nasal epithelium ISC assay: 1. Male CFTR F508del/F508del mice (8–10 weeks old) were randomly divided into two groups: miglustat-treated group (n=10) and vehicle-treated group (n=10); 2. miglustat was dissolved in 0.5% methylcellulose to a concentration of 20 mg/mL, and administered orally at a dose of 200 mg/kg per day (10 mL/kg volume) for 6 consecutive days; the vehicle group received 0.5% methylcellulose alone; 3. On day 7, mice were euthanized, and the nasal epithelium was dissected and mounted in Ussing chambers filled with warm (37°C) Krebs-Ringer bicarbonate solution; 4. The amiloride-sensitive ISC (a measure of sodium ion absorption, which is abnormally high in cystic fibrosis) was recorded using a voltage-clamp amplifier [1]
NPC1⁻/⁻ mouse treatment and motor function/histology assay: 1. Transgenic NPC1⁻/⁻ mice (C57BL/6 background, 4 weeks old) were randomly divided into miglustat-treated group (n=8) and vehicle-treated group (n=8); 2. miglustat was dissolved in 0.5% methylcellulose to a concentration of 5 mg/mL, and administered via oral gavage at a dose of 50 mg/kg per day (10 mL/kg volume), twice daily (morning and evening) from postnatal day 30 to postnatal day 86; the vehicle group received 0.5% methylcellulose alone; 3. Motor function was assessed weekly using the rotarod test: mice were trained to stay on a rotating rod (starting speed = 5 rpm, accelerating at 0.1 rpm/s), and the latency to fall (maximum 300 seconds) was recorded; 4. At the end of treatment (postnatal day 86), mice were euthanized, and brains were harvested, fixed in 4% paraformaldehyde, embedded in paraffin, and sectioned (5 μm thick); hippocampal sections were stained with TUNEL reagent to count apoptotic neurons [2]
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Mean oral bioavailability is 97%.
Metabolism / Metabolites
There is no evidence that miglustat is metabolized in humans.
Biological Half-Life
The effective half-life of miglustat is approximately 6 to 7 hours.
Toxicity/Toxicokinetics
In the CFTR F508del/F508del mouse study: - No mortality, weight loss, or obvious signs of toxicity (e.g., abnormal behavior, reduced activity) were observed in mice treated with miglustat (200 mg/kg per day for 6 days) compared to vehicle-treated mice [1]
In the NPC1⁻/⁻ mouse study: - miglustat treatment (50 mg/kg per day for 8 weeks) did not cause significant changes in liver function markers (alanine transaminase, ALT; aspartate transaminase, AST) or renal function markers (blood urea nitrogen, BUN; creatinine) compared to vehicle-treated NPC1⁻/⁻ mice (measured via clinical chemistry analysis of serum samples) [2]
No data on plasma protein binding, drug-drug interactions, or median lethal dose (LD₅₀) were reported in the specified literatures [1][2]
References

[1]. Anti-inflammatory effect of miglustat in bronchial epithelial cells. J Cyst Fibros. 2008 Nov;7(6):555-65.

[2]. Miglustat Reverts the Impairment of Synaptic Plasticity in a Mouse Model of NPC Disease. Neural Plast. 2016:2016:3830424.

Additional Infomation
Miglustat exerts its biological effects primarily by inhibiting glucosylceramide synthase, which reduces the biosynthesis of glycosphingolipids—lipids that are abnormally accumulated in diseases like cystic fibrosis and Niemann-Pick type C (NPC) disease [1][2]
In cystic fibrosis, the anti-inflammatory activity of miglustat (reducing IL-8 secretion) may help alleviate airway inflammation, a key pathological feature of the disease, while its ability to restore F508del-CFTR function addresses the underlying defect in ion transport [1]
In NPC disease, miglustat’s restoration of synaptic plasticity (LTP) and reduction of neuronal apoptosis suggest it may have neuroprotective effects, which could help slow the progression of neurological symptoms in NPC disease [2]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C10H21NO4
Molecular Weight
255.7390
Exact Mass
255.123
Elemental Analysis
C, 46.96; H, 8.67; Cl, 13.86; N, 5.48; O, 25.02
CAS #
210110-90-0
Related CAS #
Miglustat;72599-27-0;Miglustat-d9 hydrochloride;1883545-57-0
PubChem CID
6603107
Appearance
White to light brown solid powder
Boiling Point
421.2ºC at 760 mmHg
Melting Point
169-172ºC
Flash Point
208.5ºC
Vapour Pressure
7.37E-09mmHg at 25°C
Hydrogen Bond Donor Count
5
Hydrogen Bond Acceptor Count
5
Rotatable Bond Count
4
Heavy Atom Count
16
Complexity
190
Defined Atom Stereocenter Count
4
SMILES
CCCCN1C[C@@H]([C@H]([C@@H]([C@H]1CO)O)O)O.Cl
InChi Key
QPAFAUYWVZMWPR-ZSOUGHPYSA-N
InChi Code
InChI=1S/C10H21NO4.ClH/c1-2-3-4-11-5-8(13)10(15)9(14)7(11)6-12/h7-10,12-15H,2-6H2,1H31H/t7-,8+,9-,10-/m1./s1
Chemical Name
(2R,3R,4R,5S)-1-butyl-2-(hydroxymethyl)piperidine-3,4,5-triol hydrochloride
Synonyms
OGT918; OGT 918; OGT-918; N-butyldeoxynojirimycin; (2R,3R,4R,5S)-1-butyl-2-(hydroxymethyl)piperidine-3,4,5-triol;hydrochloride; 874-729-5; RefChem:397514; 210110-90-0; Miglustat hydrochloride; Miglustat (hydrochloride); N-Butyldeoxynojirimycin hydrochloride; N-Butyldeoxynojirimycin.HCl; NB-DNJ; Miglustat hydrochloride; Zavesca.
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~65 mg/mL (~254.16 mM)
H2O : ≥ 34 mg/mL (~132.95 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 3.25 mg/mL (12.71 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 32.5 mg/mL clear DMSO stock solution to 400 μL of PEG300 and mix evenly; then add 50 μL of Tween-80 to the above solution and mix evenly; then add 450 μL of normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 3.25 mg/mL (12.71 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 32.5 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 3.25 mg/mL (12.71 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 32.5 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 100 mg/mL (391.02 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.9102 mL 19.5511 mL 39.1022 mL
5 mM 0.7820 mL 3.9102 mL 7.8204 mL
10 mM 0.3910 mL 1.9551 mL 3.9102 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
A Study to Evaluate the Safety, Efficacy, PK, PD and Immunogenicity of Cipaglucosidase Alfa/Miglustat in IOPD Subjects Aged 0 to <18
CTID: NCT04808505
Phase: Phase 3    Status: Recruiting
Date: 2024-11-06
A Global Prospective Observational Registry of Patients With Pompe Disease
CTID: NCT06121011
Phase:    Status: Recruiting
Date: 2024-10-30
ZIP Study-OL Study of Safety, PK, Efficacy, PD, Immunogenicity of ATB200/AT2221 in Pediatrics Aged 0 to < 18 y.o. w/LOPD
CTID: NCT03911505
Phase: Phase 3    Status: Recruiting
Date: 2024-09-19
An Open-label Safety, Pharmacokinetic, and Efficacy Study of Miglustat for the Treatment of CLN3 Disease
CTID: NCT05174039
Phase: Phase 1/Phase 2    Status: Active, not recruiting
Date: 2024-04-26
Effects of Miglustat Therapy on Infantile Type of Sandhoff and Taysachs Diseases (EMTISTD)
CTID: NCT03822013
Phase: Phase 3    Status: Recruiting
Date: 2024-04-16
View More

A Study Comparing ATB200/AT2221 With Alglucosidase Alfa/Placebo in Adult Subjects With Late-onset Pompe Disease
CTID: NCT03729362
Phase: Phase 3    Status: Completed
Date: 2023-09-11


Safety and Efficacy of Miglustat in Chinese NPC Patients
CTID: NCT03910621
Phase: Phase 4    Status: Completed
Date: 2022-05-25
Testing Miglustat Administration in Subjects With Spastic Paraplegia 11
CTID: NCT04768166
Phase: Phase 2    Status: Completed
Date: 2022-04-11
Synergistic Enteral Regimen for Treatment of the Gangliosidoses
CTID: NCT02030015
Phase: Phase 4    Status: Terminated
Date: 2021-04-14
Miglustat on Gaucher Disease Type IIIB
CTID: NCT02520934
Phase: N/A    Status: Unknown status
Date: 2019-03-29
Clinical Study to Evaluate the Long Term Efficacy, Safety and Tolerability of Miglustat in Patients With Stable Type 1 Gaucher Disease
CTID: NCT00319046
Phase: Phase 3    Status: Completed
Date: 2018-11-21
Observational Study for Subjects With Pompe Disease Undergoing Immune Modulation Therapies
CTID: NCT01451879
Phase:    Status: Completed
Date: 2017-12-08
OGT 918-006: A Phase I/II Randomized, Controlled Study of OGT 918 in Patients With Neuronopathic Gaucher Disease
CTID: NCT00041535
Phase: Phase 2    Status: Completed
Date: 2017-07-02
-----------------
Combined enzyme enhancement therapy (EET) and enzyme replacement therapy (ERT) in patients with Pompe disease
CTID: null
Phase: Phase 2    Status: Ongoing
Date: 2011-03-18
Determination of ( 11 C) miglustat uptake in bone tissue and brain using Positron Emission Tomography (PET).
CTID: null
Phase: Phase 4    Status: Completed
Date: 2009-07-15
Multicenter randomized study to assess the efficacy and the safety of two therapeutic regimens(high dose of imiglucerase versus co-administration of imiglucerase and miglustat) in type I Gaucher disease patients who have not responded to previous treatment with low dose imiglucerase
CTID: null
Phase: Phase 4    Status: Completed
Date: 2009-02-06
Single center, double-blind, randomized, placebo-controlled, two-period/two-treatment crossover study investigating the effect of miglustat on the nasal potential difference in patients with cystic fibrosis homozygous for the F508del mutation
CTID: null
Phase: Phase 2    Status: Completed
Date: 2008-08-11
Uso racional de los tratamientos por inhibición de sustrato y enzimático sustitutivo en pacientes con Enfermedad de Gaucher tipo 1
CTID: null
Phase: Phase 3    Status: Completed
Date: 2008-05-20
'Estudio unicéntrico, a doble ciego, aleatorizado y controlado con placebo, cruzado de 2 brazos, para investigar el efecto de miglustat sobre la diferencia de potencial nasal en pacientes con fibrosis quística homocigotos para la mutación ΔF508'
CTID: null
Phase: Phase 2    Status: Completed
Date: 2007-07-22
Evaluation d’un traitement par miglustat (Zavesca®) chez les patients atteints de mucopolysaccharidose de type III (maladie de Sanfilippo).
CTID: null
Phase: Phase 2    Status: Ongoing
Date: 2006-12-08
Efficacy and safety of treatment with N-butyl-deoxynojirimycin (NB-DNJ-miglustat) in patients with Niemann-Pick disease type C.
CTID: null
Phase: Phase 3    Status: Ongoing
Date: 2006-11-22
A phase IV, open-label, non comparative, multi-center study to evaluate the long term efficacy and safety and tolerability of oral miglustat as a maintenance after a switch from Enzyme Replacement Therapy (ERT) in adult patients with stable Type 1 Gaucher Disease
CTID: null
Phase: Phase 4    Status: Completed
Date: 2005-10-27

Contact Us