MI-773 (2'S,3R isomer, SAR-405838)

Alias: MI773; MI-773; MI 773; MI 77301; MI77301; MI-77301; SAR-405838; SAR 405838; SAR405838
Cat No.:V0021 Purity: ≥98%
MI-773 (2S,3R isomer, SAR405838) is a novel, potent, specific and orally bioavailable small molecule antagonist of MDM2/piro-oxindole HDM2 (Murine double minute 2/human double minute 2) with a Ki value of 0.88 nM.
MI-773 (2'S,3R isomer, SAR-405838) Chemical Structure CAS No.: 1303607-60-4
Product category: p53
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
2mg
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

MI-773 (2'S,3R isomer, SAR405838) is a novel, potent, specific and orally bioavailable small molecule antagonist of MDM2/piro-oxindole HDM2 (Murine double minute 2/human double minute 2) with a Ki value of 0.88 nM. There may be some anticancer properties. Wild-type p53, a tumor suppressor, is primarily negatively regulated by MDM2, a protein. The p53 trans-activation domain (TAD) is blocked by MDM2, an E3 ubiquitin ligase that also promotes p53 degradation.

Biological Activity I Assay Protocols (From Reference)
Targets
MDM2 (Ki = 0.88 nM); MDM2 (Kd = 8.2 nM)
ln Vitro
SAR405838 (MI-77301) potently inhibits cell growth in cancer cell lines, including SJSA-1 (IC50, 0.092 μM), RS4;11 (IC50, 0.089 μM), LNCaP (IC50, 0.27 μM), and HCT-116 (IC50, 0.20 μM) cells, and displays high selectivity over cancer cell lines with mutated or deleted p53, including SAOS-2 (IC50, >10 μM), PC-3 (IC50, >10 μM), SW620 (IC50, >10 μM), and HCT-116 (p53-/-) (IC50, >20 μM) cells[1].
SAR405838 has a modestly reduced potency when compared to the control RS4;11 cell line, but it still effectively inhibits cell growth and induces dose-dependent apoptosis in the ABTR1 and ABTR2 sublines[2].
ln Vivo
SAR405838 inhibits the growth of tumors completely or permanently in mouse xenograft models of SJSA-1 osteosarcoma, RS4;11 acute leukemia, LNCaP prostate cancer, and HCT-116 colon cancer at dose schedules that are well tolerated. Surprisingly, SAR405838 only requires one oral dose to completely reverse tumor growth in the SJSA-1 model. MI-773 (p.o.) effectively inhibits tumor growth in a dose-dependent manner in the SJSA-1 osteosarcoma, acute lymphoblastic leukemia RS4;11, LNCaP prostate cancer, and HCT-116 colon cancer xenograft model (10 mg/kg, 30 mg/kg, 50 mg/kg, 100 mg/kg, and 200 mg/kg)[1].
Enzyme Assay
Using a Fluorescence-polarization (FP) binding assay, binding affinities of MDM2 inhibitors and p53 peptide to MDM2 protein are assessed. MI-773's binding affinities to Bcl-2, Bcl-xL, Mcl-1, and β-catenin are assessed using a competitive FP-based assay, and its affinity for MDMx is assessed using Biolayer Interferometry technology.
Cell Assay
In a water-soluble tetrazolium-based assay, cell growth inhibition activity is assessed. Trypan blue staining is used to measure cell death, and a kit for staining with Annexin V-FLUOS determines apoptosis.
Animal Protocol
10% PEG400: 3% Cremophor: 87% PBS, or 2% TPGS: 98% PEG200; 200 mg/kg; Oral
SCID mice with SJSA-1 osteosarcoma (females), acute lymphoblastic leukemia RS4;11 (females), LNCaP prostate cancer (males), or HCT-116 colon cancer (females) xenograft model
References

[1]. Cancer Res . 2014 Oct 15;74(20):5855-65.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C29H34CL2FN3O3
Molecular Weight
562.50
Exact Mass
561.20
Elemental Analysis
C, 61.92; H, 6.09; Cl, 12.60; F, 3.38; N, 7.47; O, 8.53
CAS #
1303607-60-4
Related CAS #
SAR405838-d10
Appearance
Solid powder
SMILES
CC(C)(C)C[C@H]1[C@@]2([C@H]([C@@H](N1)C(=O)NC3CCC(CC3)O)C4=C(C(=CC=C4)Cl)F)C5=C(C=C(C=C5)Cl)NC2=O
InChi Key
IDKAKZRYYDCJDU-AEPXTFJPSA-N
InChi Code
InChI=1S/C29H34Cl2FN3O3/c1-28(2,3)14-22-29(19-12-7-15(30)13-21(19)34-27(29)38)23(18-5-4-6-20(31)24(18)32)25(35-22)26(37)33-16-8-10-17(36)11-9-16/h4-7,12-13,16-17,22-23,25,35-36H,8-11,14H2,1-3H3,(H,33,37)(H,34,38)/t16?,17?,22-,23-,25+,29+/m0/s1
Chemical Name
(2'R,3R,3'S,5'S)-6-chloro-3'-(3-chloro-2-fluorophenyl)-5'-(2,2-dimethylpropyl)-N-(4-hydroxycyclohexyl)-2-oxospiro[1H-indole-3,4'-pyrrolidine]-2'-carboxamide
Synonyms
MI773; MI-773; MI 773; MI 77301; MI77301; MI-77301; SAR-405838; SAR 405838; SAR405838
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~100 mg/mL (~177.8 mM)
Water: <1 mg/mL (slightly soluble or insoluble)
Ethanol: ~31 mg/mL warming (~55.1 mM)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.7778 mL 8.8889 mL 17.7778 mL
5 mM 0.3556 mL 1.7778 mL 3.5556 mL
10 mM 0.1778 mL 0.8889 mL 1.7778 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • MI-773 (SAR405838)


  • MI-773 (SAR405838)

    Microsoft Word - NIHMS621402-manuscript-1SAR405838 potently activates p53 in the SJSA-1 and HCT-116 cancer cell lines and strongly induces PUMA up-regulation and cleavage of caspase-3 and PARP in the SJSA-1 cell line but not in the HCT-116 cell line. Wang S, et al. Cancer Res. 2014, 74(20), 5855-5865.
Contact Us Back to top