yingweiwo

Metsulfuron-methyl

Cat No.:V15430 Purity: ≥98%
Metsulfuron-methyl is a systemic sulfonylurea herbicide that has been extensively used to control broadleaf weeds and annual grasses in rice, corn, wheat and barley.
Metsulfuron-methyl
Metsulfuron-methyl Chemical Structure CAS No.: 74223-64-6
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Metsulfuron-methyl is a systemic sulfonylurea herbicide that has been extensively used to control broadleaf weeds and annual grasses in rice, corn, wheat and barley. Metsulfuron-methyl has potent herbicidal activity and low mammalian toxicity.
Biological Activity I Assay Protocols (From Reference)
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Overall recovery of metsulfuron methyl among the treatment groups was acceptable (about 91.6-103.8%). The primary route of excretion /in rats/ was via the urine which accounted for approximately 71-95% (78-96% if cage wash radioactivity is considered) among the various treatment groups. Fecal elimination was 4.8-13.3%. Excretion was almost complete within 48 ours. Based on time course urinary and fecal excretion data, elimination half-lives (males and females) were estimated to be 13-16 hours for Group I (single low dose), 9-12 hours for Group II (21 day dietary exposure), and 23-29 hours for Group III single high dose) which affirmed notable alteration of absorption and/or excretion processes in the high-dose group. Tissue burdens were minimal (generally <0.1% to 1%) regardless of exposure protocol; the gastrointestinal tract, carcass, and skin had the highest concentrations of radioactivity. For the single or repeated low dose groups, the tissue content was generally >0.03 ppm. In the high-dose group, females had somewhat higher tissue burdens (ranging from 0.8 ppm in brain to 7.1 ppm in liver and 8.0 ppm in kidneys) than did males (0.1 ppm in blood to 1.6 ppm in liver and 2.6 ppm in kidneys). No evidence for sequestration of the test article or its biotransformation products.
In mammals, following oral administration, metsulfuron-methyl is excreted predominantly unchanged. The methoxycarbonyl and sulfonylurea groups are only partly degraded, by O-demethylation and hydroxylation.
Metabolism / Metabolites
Four metabolites and parent were recovered in both urine and feces /of rats/ in all treatment groups. Parent compound accounted for most of the urinary and fecal radioactivity (77-90% and 1.8-6.2% of the administered dose, respectively). Metabolite I was consistent with (methyl 2-((amino)sulfonyl)benzoate); Metabolite II - (2-((amino)sulfonyl)benzoic acid); and Metabolite III was consistent with (methyl 2-((((amino)carbonyl)amino)sulfonyl)benzoate). Metab. I and II appeared to result from sequential hydrolysis reactions terminating in the formation of saccharin while metab. III was formed by cleavage of the two ring structures. Total metabolites (in urine + feces of each group) accounted for approximately 5.4-8.2% of the administered dose. The metabolite profiles were qualitatively similar for urine and feces in that parent compound and the four metabolites (saccharin, metabolites I, II, and III) were found in both matrices.
(Phenyl-(U)-(14)C)sulfometuron-methyl was metabolized in excised wheat seedlings (sensitive to sulfometuron-methyl) to (14)C methyl 2-(((((4-hydroxymethyl)-6-methylpyrimindin-2-yl)amino)carbonyl)amino sulfonyl)benzoate and its carbohydrate conjugate. This metabolic pathway is consistent with sulfometuron-methyl metabolism in tolerant species such as Bermuda grass. Sulfometuron-methyl was metabolized at a slower rate than metsulfuron-methyl in wheat. When plants were exposed to (14)C methyl-4-hydroxy-2(((((4-methoxy-6-methyl-1,3,5-triazin-2- yl-) amino)carbonyl)amino)-sulfonyl)benzoate and (14)C methyl 2-(((((4-hydroxymethyl)-6-methylpyrimindin-2-yl) amino)carbonyl)amino)sulfonyl)benzoate (the primary hydroxylated wheat metabolites of metsulfuron-methyl and sulfometuron-methyl, respectively), the rate of glucose conjugation of methyl-4-hydroxy-2(((((4-methoxy-6-methyl- 1,3,5-triazin-2-yl-)amino)carbonyl)amino)-sulfonyl)benzoate was much faster than the rate of glucose conjugation of methyl 2-(((((4-hydroxymethyl)-6- methylpyrimindin-2- yl)amino)carbonyl)amino)sulfonyl)benzoate. Along with their parent cmpd, both methyl 2-(((((4-hydroxymethyl)-6- methylpyrimindin-2- yl)amino)carbonyl)amino)sulfonyl)benzoate and methyl-4-hydroxy-2(((((4-methoxy-6-methyl-1,3,5-triazin-2- yl- )amino)carbonyl)amino)-sulfonyl)benzoate are potent inhibitors of wild mustard acetolactate synthase. These results indicate that wheat intolerance to sulfometuron-methyl (but tolerance to the structurally closed related metsulfon-methyl) reflects not only a reduced ability to hydroxylate the parent molecule but also a reduced ability to conjugate the primary toxic metabolite to a nontoxic moiety.
In mammals, following oral administration, metsulfuron-methyl is excreted predominantly unchanged. The methoxycarbonyl and sulfonylurea groups are only partly degraded, by O-demethylation and hydroxylation.
Biological Half-Life
Based on time course urinary and fecal excretion data /in rats/, elimination half-lives (males and females) were estimated to be 13-16 hours for Group I (single low dose), 9-12 hours for Group II (21 day dietary exposure), and 23-29 hours for Group III single high dose) ...
Toxicity/Toxicokinetics
Toxicity Data
LC50 (rat) > 5,000 mg/m3/4h
Non-Human Toxicity Values
LC50 Rat (male and female) inhalation >5 mg/L air/4 hr
LD50 Rat (male and female) oral >5000 mg/kg
LD50 Rabbit percutaneous >2000 mg/kg
LD50 Rabbit (male and female) oral >2000 mg/kg
Additional Infomation
Metsulfuron methyl is a N-sulfonylurea in which the sulfonyl group is attached to a 2-(methoxycarbonyl)phenyl group while a (4-methoxy-6-methyl-1,3,5-triazin-2-yl group replaces one of the amino hydrogens of the remaining urea group. It has a role as a herbicide, an environmental contaminant and a xenobiotic. It is a benzoate ester, a N-sulfonylurea and a methoxy-1,3,5-triazine.
Metsulfuron-methyl is a residual sulfonylurea herbicide that kills broadleaf weeds and some annual grasses. It is a systemic compound with foliar and soil activity, that inhibits cell division in shoots and roots. It has residual activity in soils, allowing it to be used infrequently but requiring up to 22 months before planting certain crops (sunflowers, flax, corn, or safflower). It has very low toxicity to mammals, birds, fish, and insects, but is a moderate eye irritant.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C14H15N5O6S
Molecular Weight
381.36
Exact Mass
381.074
CAS #
74223-64-6
PubChem CID
52999
Appearance
White crytals
White to pale yellow solid
Colorless crystals
Density
1.473 g/cm3
Boiling Point
647.2ºC at 760 mmHg
Melting Point
158°C
Flash Point
345.2ºC
Index of Refraction
1.593
LogP
2.03
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
9
Rotatable Bond Count
6
Heavy Atom Count
26
Complexity
609
Defined Atom Stereocenter Count
0
SMILES
CC1=NC(NC(OC)=N1)=NC(NS(=O)(C2=CC=CC=C2C(OC)=O)=O)=O
InChi Key
RSMUVYRMZCOLBH-UHFFFAOYSA-N
InChi Code
InChI=1S/C14H15N5O6S/c1-8-15-12(18-14(16-8)25-3)17-13(21)19-26(22,23)10-7-5-4-6-9(10)11(20)24-2/h4-7H,1-3H3,(H2,15,16,17,18,19,21)
Chemical Name
methyl 2-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)carbamoylsulfamoyl]benzoate
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: This product requires protection from light (avoid light exposure) during transportation and storage.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~262.22 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (6.56 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (6.56 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.6222 mL 13.1110 mL 26.2219 mL
5 mM 0.5244 mL 2.6222 mL 5.2444 mL
10 mM 0.2622 mL 1.3111 mL 2.6222 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us