Size | Price | Stock | Qty |
---|---|---|---|
250mg |
|
||
500mg |
|
||
1g |
|
||
2g |
|
||
10g |
|
||
Other Sizes |
|
Purity: ≥98%
Mefloquine HCl (Mefloquin) is a blood schizonticide which inhibits hemozoin formation, and is used as a phospholipid-interacting antimalarial drug. Mefloquine is widely used in both the treatment and prophylaxis of Plasmodium falciparum malaria. Mefloquine can induces oxidative stress in vitro. Evidence indicates that reactive oxygen species (ROS) may be used as a therapeutic modality to kill cancer cell. Mefloquine inhibited KvLQT1/minK channel currents with an IC50 value of approximately 1 μM. Mefloquine slowed the activation rate of KvLQT1/minK and more block was evident at lower membrane potentials compared with higher ones.
Targets |
Plasmodium
|
||
---|---|---|---|
ln Vitro |
Mefloquine is a quinoline antimalarial drug that is structurally related to the antiarrhythmic agent quinidine. Mefloquine is widely used in both the treatment and prophylaxis of Plasmodium falciparum malaria. MQ can induces oxidative stress in vitro. Evidence indicates that reactive oxygen species (ROS) may be used as a therapeutic modality to kill cancer cells.
Mefloquine has an IC50 of roughly 10 μM, which preferentially inhibits the development of prostate cancer (PCa) cells. Moreover, mefloquine causes ROS generation and hyperpolarization of the mitochondrial membrane potential (MMP) [2]. In PC3 cells, mefloquine (10 μM)-mediated ROS concurrently stimulates ERK, JNK, and AMPK signaling and downregulates Akt phosphorylation [2]. In VeroE6/TMPRSS2 and Calu-3 cells, mefloquine exhibited more anti-SARS-CoV-2 activity than hydroxychloroquine, with IC50 values of 1.28 μM, IC90 values of 2.31 μM, and IC99 values of 4.39 μM in VeroE6/TMPRSS2 cells. ..Once the virus binds to its target cells, mefloquine prevents further viral entrance [3]. |
||
ln Vivo |
Pregnant rats were treated orally with AS (15 and 40 mg/kg body weight (bwt)/day), MQ (30 and 80 mg/kg bwt/day) and AS/MQ (15/30 and 40/80 mg/kg bwt/day) on days 9-11 post coitum (pc). The dams were euthanized on day 12 pc and gestational and embryos histological parameters were evaluated.
Mefloquine (5 mg/kg; intraperitoneal; daily; 14 days) reverses bone development and cancellous bone volume in the lower vertebra; in older mice, it has no effect on cortical bone volume, thickness, and moment of inertia [4]. Aging is accompanied by imbalanced bone remodeling, elevated osteocyte apoptosis, and decreased bone mass and mechanical properties; and improved pharmacologic approaches to counteract bone deterioration with aging are needed. We examined herein the effect of mefloquine, a drug used to treat malaria and systemic lupus erythematosus and shown to ameliorate bone loss in glucocorticoid-treated patients, on bone mass and mechanical properties in young and old mice. Young 3.5-month-old and old 21-month-old female C57BL/6 mice received daily injections of 5 mg/kg/day mefloquine for 14 days. Aging resulted in the expected changes in bone volume and mechanical properties. In old mice mefloquine administration reversed the lower vertebral cancellous bone volume and bone formation; and had modest effects on cortical bone volume, thickness, and moment of inertia. Mefloquine administration did not change the levels of the circulating bone formation markers P1NP or alkaline phosphatase, whereas levels of the resorption marker CTX showed trends towards increase with mefloquine treatment. In addition, and as expected, aging bones exhibited an accumulation of active caspase3-expressing osteocytes and higher expression of apoptosis-related genes compared to young mice, which were not altered by mefloquine administration at either age. In young animals, mefloquine induced higher periosteal bone formation, but lower endocortical bone formation. Further, osteoclast numbers were higher on the endocortical bone surface and circulating CTX levels were increased, in mefloquine- compared to vehicle-treated young mice. Consistent with this, addition of mefloquine to bone marrow cells isolated from young mice led to increased osteoclastic gene expression and a tendency towards increased osteoclast numbers in vitro. Taken together our findings identify the age and bone-site specific skeletal effects of mefloquine. Further, our results highlight a beneficial effect of mefloquine administration on vertebral cancellous bone mass in old animals, raising the possibility of using this pharmacologic inhibitor to preserve skeletal health with aging [4]. |
||
Enzyme Assay |
Mefloquine is a quinoline antimalarial drug that is structurally related to the antiarrhythmic agent quinidine. Mefloquine is widely used in both the treatment and prophylaxis of Plasmodium falciparum malaria. Mefloquine can prolong cardiac repolarization, especially when coadministered with halofantrine, an antagonist of the human ether-a-go-go-related gene (HERG) cardiac K+ channel. For these reasons we examined the effects of mefloquine on the slow delayed rectifier K+ channel (KvQT1/minK) and HERG, the K+ channels that underlie the slow (I(Ks)) and rapid (I(Kr)) components of repolarization in the human myocardium, respectively. Using patch-clamp electrophysiology we found that mefloquine inhibited KvLQT1/minK channel currents with an IC50 value of approximately 1 microM. Mefloquine slowed the activation rate of KvLQT1/minK and more block was evident at lower membrane potentials compared with higher ones. When channels were held in the closed state during drug application, block was immediate and complete with the first depolarizing step. HERG channel currents were about 6-fold less sensitive to block by mefloquine (IC50 = 5.6 microM). Block of HERG displayed a positive voltage dependence with maximal inhibition obtained at more depolarized potentials. In contrast to structurally related drugs such as quinidine, mefloquine is a more effective antagonist of KvLQT1/minK compared with HERG. Block of KvLQT1/minK by mefloquine may involve an interaction with the closed state of the channel. Inhibition by mefloquine of KvLQT1/minK in the human heart may in part explain the synergistic prolongation of QT interval observed when this drug is coadministered with the HERG antagonist halofantrine [1].
|
||
Cell Assay |
Mefloquine inhibitedKvLQT1/minK channel currents with an IC50 value of approximately 1 microM. Mefloquine slowed the activation rate of KvLQT1/minK and more block was evident at lower membrane potentials compared with higher ones. HERG channel currents were about 6-fold less sensitive to block by mefloquine (IC50 = 5.6 microM). Block of HERG displayed a positive voltage dependence with maximal inhibition obtained at more depolarized potentials. MQ has a highly selective cytotoxicity that inhibits PCa cell growth. MQ-mediated ROS simultaneously downregulated Akt phosphorylation and activated extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and adenosine monophosphate-activated protein kinase (AMPK) signaling in PC3 cells.
Mefloquine (MQ) is a prophylactic anti-malarial drug. Previous studies have shown that MQ induces oxidative stress in vitro. Evidence indicates that reactive oxygen species (ROS) may be used as a therapeutic modality to kill cancer cells. This study investigated whether MQ also inhibits prostate cancer (PCa) cell growth. We used sulforhodamine B (SRB) staining to determine cell viability. MQ has a highly selective cytotoxicity that inhibits PCa cell growth. The antitumor effect was most significant when examined using a colony formation assay. MQ also induces hyperpolarization of the mitochondrial membrane potential (MMP), as well as ROS generation. The blockade of MQ-induced anticancer effects by N-acetyl cysteine (NAC) pre-treatment confirmed the role of ROS. This indicates that the MQ-induced anticancer effects are caused primarily by increased ROS generation. Moreover, we observed that MQ-mediated ROS simultaneously downregulated Akt phosphorylation and activated extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and adenosine monophosphate-activated protein kinase (AMPK) signaling in PC3 cells. These findings provide insights for further anticancer therapeutic options [2]. Coronavirus disease 2019 (COVID-19) has caused serious public health, social, and economic damage worldwide and effective drugs that prevent or cure COVID-19 are urgently needed. Approved drugs including Hydroxychloroquine, Remdesivir or Interferon were reported to inhibit the infection or propagation of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), however, their clinical efficacies have not yet been well demonstrated. To identify drugs with higher antiviral potency, we screened approved anti-parasitic/anti-protozoal drugs and identified an anti-malarial drug, Mefloquine, which showed the highest anti-SARS-CoV-2 activity among the tested compounds. Mefloquine showed higher anti-SARS-CoV-2 activity than Hydroxychloroquine in VeroE6/TMPRSS2 and Calu-3 cells, with IC50 = 1.28 μM, IC90 = 2.31 μM, and IC99 = 4.39 μM in VeroE6/TMPRSS2 cells. Mefloquine inhibited viral entry after viral attachment to the target cell. Combined treatment with Mefloquine and Nelfinavir, a replication inhibitor, showed synergistic antiviral activity. Our mathematical modeling based on the drug concentration in the lung predicted that Mefloquine administration at a standard treatment dosage could decline viral dynamics in patients, reduce cumulative viral load to 7% and shorten the time until virus elimination by 6.1 days. These data cumulatively underscore Mefloquine as an anti-SARS-CoV-2 entry inhibitor [3]. |
||
Animal Protocol |
|
||
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
Mefloquine is readily absorbed from the gastrointestinal tract; food significantly increases absorption and increases bioavailability by 40%. The bioavailability of tablets compared with the oral solution preparation of mefloquine is over 85%. Cmax is achieved in 6 to 24 hours in healthy volunteers after a single dose. Average blood concentrations range between 50 to 110 ng/ml/mg/kg. A weekly dose of 250 mg leads to steady-state plasma concentrations of 1000 to 2000 μg/L, after 7 to 10 weeks of administration. Mefloquine is believed to be excreted in the bile and feces. In healthy volunteers who have achieved steady-state concentrations of mefloquine, the unchanged drug was excreted at 9% of the ingested dose, and excretion of its carboxylic metabolite under was measured at 4% of the ingested dose. Concentrations of other metabolites could not be determined. The apparent volume of distribution is in healthy adults is about 20 L/kg with wide tissue distribution. Various estimates of the total apparent volume of distribution range from 13.3 to 40.9L/kg. Mefloquine can accumulate in erythrocytes that have been infected with malaria parasites. The systemic clearance of mefloquine ranges from 0.022 to 0.073 L/h/kg, with an increased clearance during pregnancy. Prescribing information mentions a clearance rate of 30 mL/min. Mefloquine is reasonably well absorbed from the gastrointestinal tract but there is marked interindividual variation in the time required to achieve peak plasma concentrations. ... Mefloquine undergoes enterohepatic recycling. It is approximately 98% bound to plasma proteins and is widely distributed throughout the body. The pharmacokinetics of mefloquine may be altered by malaria infection with reduced absorption and accelerated clearance. ... Mefloquine is excreted in small amounts in breast milk. It has a long elimination half-life of around 21 days, which is shortened in malaria to about 14 days, possibly because of interrupted enterohepatic cycling. Mefloquine is metabolized in the liver and excreted mainly in the bile and feces. Its pharmacokinetics show enantioselectivity after administration of the racemic mixture, with higher peak plasma concentrations and area under the curve values, and lower volume of distribution and total clearance of the SR enantiomer than its RS antipode. The bioavailability of the tablet formulation compared with an oral solution was over 85%. The presence of food significantly enhances the rate and extent of absorption, leading to about a 40% increase in bioavailability. Plasma concentrations peak 6-24 hours (median, about 17 hours) after a single oral dose of mefloquine. Maximum plasma concentrations in ug/L are roughly equivalent to the dose in milligrams (for example, a single 1000 mg dose produces a maximum concentration of about 1000 ug/L). At a dose of 250 mg once weekly, maximum steady state plasma concentrations of 1000-2000 ug/L are reached after 7-10 weeks. Distributed to blood, urine, CSF, and tissues; concentrated in erythrocytes... In healthy adults, the apparent volume of distribution is approximately 20 L/kg, indicating extensive tissue distribution. Mefloquine may accumulate in parasitized erythrocytes at an erythrocyte-to-plasma concentration ratio of about 2. Protein binding is about 98%. Mefloquine blood concentrations of 620 ng/mL are considered necessary to achieve 95% prophylactic efficacy. For more Absorption, Distribution and Excretion (Complete) data for MEFLOQUINE (12 total), please visit the HSDB record page. Metabolism / Metabolites Mefloquine is heavily metabolized in the liver by the CYP3A4 enzyme. Two metabolites have been identified; the main metabolite, 2,8-bis-trifluoromethyl-4-quinoline carboxylic acid, which inactive against plasmodium falciparum. The second metabolite, an alcohol, is found in small quantities. Biotransformation: Hepatic (partial); metabolized primarily to the carboxylic acid metabolite. Mefloquine is extensively metabolized in the liver by the cytochrome P450 system. In vitro and in vivo studies strongly suggested that CYP3A4 is the major isoform involved. Two metabolites of mefloquine have been identified in humans. The main metabolite, 2,8-bis-trifluoromethyl-4-quinoline carboxylic acid, is inactive in Plasmodium falciparum. In a study in healthy volunteers, the carboxylic acid metabolite appeared in plasma 2 to 4 hours after a single oral dose. Maximum plasma concentrations of the metabolite, which were about 50% higher than those of mefloquine, were reached after 2 weeks. Thereafter, plasma levels of the main metabolite and mefloquine declined at a similar rate. The area under the plasma concentration-time curve (AUC) of the main metabolite was 3 to 5 times larger than that of the parent drug. The other metabolite, an alcohol, was present in minute quantities only. Biological Half-Life The terminal elimination half-life of mefloquine ranges from 0.9 - 13.8 days, according to one pharmacokinetic review. In various studies of healthy adults, the mean elimination half-life of mefloquine varied between 2 and 4 weeks, with a mean half-life of approximately 21 days. In healthy volunteers ... mefloquine /was/ absorbed with a half-life of 1 to 4 hours ... and terminal elimination half-life from 13.8 to 40.9 days (median 20 days). Half-life: Elimination - 13 to 33 days (median 20 days); may be shorter in seriously ill patients, such as patients with acute malaria. The pharmacokinetics of mefloquine were studied in 10 healthy subjects and in 12 patients with severe acute Plasmodium falciparum malaria who received 750 mg oral mefloquine. Peak concn of mefloquine were achieved in both groups at 20-24 hr. The mean elimination half-life was 385 hr in normal subjects and was 493 hr in patients with malaria, a significant difference. In several studies in healthy adults, the mean elimination half-life of mefloquine varied between 2 and 4 weeks, with an average of about 3 weeks. For more Biological Half-Life (Complete) data for MEFLOQUINE (9 total), please visit the HSDB record page. |
||
Toxicity/Toxicokinetics |
Hepatotoxicity
Chronic therapy with mefloquine is associated with asymptomatic, transient serum enzyme elevations in up to 18% of patients. These elevations are usually mild and resolve without dose modifications. Despite widespread use, mefloquine has rarely been linked to clinically apparent acute liver injury and too few reports are available to characterize the clinical features of such injury. Instances of acute hepatocellular injury as well as cholestatic hepatitis have been linked to use of mefloquine. Allergic manifestations (rash, fever, eosinophilia) and autoantibody formation are rare. Likelihood score: D (possible rare cause of clinically apparent liver injury). Effects During Pregnancy and Lactation ◉ Summary of Use during Lactation Very small amounts of mefloquine are excreted in breastmilk; the amount of drug is not sufficient to harm the infant nor is the quantity sufficient to protect the child from malaria. Breastfeeding infants should receive the recommended dosages of mefloquine. ◉ Effects in Breastfed Infants Relevant published information was not found as of the revision date. ◉ Effects on Lactation and Breastmilk Relevant published information was not found as of the revision date. Protein Binding The binding of mefloquine to plasma proteins is over 98%. |
||
References | |||
Additional Infomation |
Mefloquine hydrochloride is a hydrochloride.
Mefloquine Hydrochloride is the hydrochloride salt form of mefloquine, a piperidinyl quinidine with antimalarial activity. Although the exact mechanism of mefloquine hydrochloride is largely unknown, this agent acts as a blood schizonticide and probably exert its actions by interacting with the phospholipid bilayer, thereby interfering with the stability of the cell membrane and causing cell lysis. Mefloquine hydrochloride is active against Plasmodium falciparum and Plasmodium vivax. A phospholipid-interacting antimalarial drug (ANTIMALARIALS). It is very effective against PLASMODIUM FALCIPARUM with very few side effects. See also: Mefloquine (has active moiety). (-)-(11S,2'R)-erythro-mefloquine is an optically active form of [2,8-bis(trifluoromethyl)quinolin-4-yl]-(2-piperidyl)methanol having (-)-(11S,2'R)-erythro-configuration. An antimalarial agent, used in racemic form, which acts as a blood schizonticide; its mechanism of action is unknown. It has a role as an antimalarial. It is an enantiomer of a (+)-(11R,2'S)-erythro-mefloquine. Malaria is a protozoan disease that places an enormous burden on human health in endemic areas around the world. The 2020 World Health Organization malaria report indicates a 60% decrease in the global malaria fatality rate between 2000 to 2019. Despite this, malaria remains a significant cause of morbidity and mortality; 90% of deaths from malaria occur in Africa. Individuals at the highest risk for malaria are those in disease naïve populations, children under age 5, refugees in Central and Eastern Africa, nonimmune civilian and military travelers, pregnant women, and immigrants traveling to their place of origin. Mefloquine, commonly known as Lariam, is an antimalarial drug used for the prevention and treatment of malaria caused by infection with Plasmodium vivax and Plasmodium falciparum. The drug was initially discovered by the Walter Reed Army Institute of Research (WRAIR) during a malaria drug discovery program between 1963 until 1976. It was approved by the FDA in 1989, and was first marketed by Hoffman Laroche. This drug has been the subject of widespread controversy due to concerns regarding neurotoxic effects; product information warns of potential serious neuropsychiatric effects. Mefloquine is an Antimalarial. Mefloquine is a quinoline derivative used for the prevention and therapy of P. falciparum malaria. Mefloquine therapy is associated with a low rate of transient and asymptomatic serum enzyme elevations and is a rare cause of clinically apparent acute liver injury. Mefloquine hydrochloride has been reported in Aspergillus sclerotiorum with data available. Mefloquine is a quinolinemethanol derivative with antimalarial, anti-inflammatory, and potential chemosensitization and radiosensitization activities. Although the exact mechanism remains to be elucidated, mefloquine, a weak base, preferentially accumulates in lysosomes and disrupts lysosomal function and integrity, thereby leading to host cell death. Similar to chloroquine, the chemosensitizing and radiosensitizing activities of this agent may be related to its inhibition of autophagocytosis, a cellular mechanism involving lysosomal degradation that minimizes the production of reactive oxygen species (ROS) related to tumor reoxygenation and tumor exposure to chemotherapeutic agents and radiation. Compared to chloroquine, mefloquine has better blood-brain-barrier (BBB) penetration. A phospholipid-interacting antimalarial drug (ANTIMALARIALS). It is very effective against PLASMODIUM FALCIPARUM with very few side effects. See also: Mefloquine Hydrochloride (has salt form); Mefloquine mesylate (is active moiety of). Drug Indication Mefloquine is indicated for the treatment of mild to moderate cases of malaria caused by Plasmodium falciparum and Plasmodium vivax. It is effective against chloroquine-resistant forms of Plasmodium falciparum. Mefloquine is also indicated for the prophylaxis of malaria caused by Plasmodium falciparum and Plasmodium vivax, including chloroquine-resistant forms of Plasmodium falciparum. FDA Label Mechanism of Action The mechanism of action of mefloquine is not completely understood. Some studies suggest that mefloquine specifically targets the 80S ribosome of the Plasmodium falciparum, inhibiting protein synthesis and causing subsequent schizonticidal effects. There are other studies in the literature with limited in vitro data on mefloquine's mechanism of action. Mefloquine, like chloroquine and quinine, is a blood schizonticidal agent and is active against the intraerythrocytic stages of parasite development. Similar to chloroquine and quinine, mefloquine appears to interfere with the parasite's ability to metabolize and utilize erythrocyte hemoglobin. The antimalarial activity of mefloquine may depend on the ability of the drug to form hydrogen bonds with cellular constituents; results of structure-activity studies indicate that the orientation of the hydroxyl and amine groups with respect to each other in the mefloquine molecule may be essential for antimalarial activity. While the precise mechanism of action of mefloquine is unknown, it may involve mechanisms that differ from those proposed for chloroquine. The effects of the antimalarial drug, mefloquine, on the uptake and release of Ca2+ by crude microsomes from dog brain were investigated using a spectrophotometric method. Mefloquine inhibited the inositol-1,4,5-phosphate (IP3)-induced Ca2+ release with an IC50 of 42 uM, but was a weaker inhibitor of the uptake of Ca2+ into the vesicles (IC50: 272 uM). These effects of mefloquine are in contrast to its actions on Ca2+ uptake and release by skeletal muscle microsomes, where its predominant effect was seen to be the inhibition of Ca2+ uptake into the vesicles. Mefloquine was found to be more potent than quinine as a specific inhibitor of Ca2+ release from IP3-sensitive stores in dog brain microsomes. The possibility of the drug affecting cellular IP3-linked signal transduction processes should be considered. |
Molecular Formula |
C17H17CLF6N2O
|
---|---|
Molecular Weight |
414.77
|
Exact Mass |
378.116
|
Elemental Analysis |
C, 49.23; H, 4.13; Cl, 8.55; F, 27.48; N, 6.75; O, 3.86
|
CAS # |
51773-92-3
|
Related CAS # |
Mefloquine;53230-10-7; 64003-26-5 (mesylate)
|
PubChem CID |
65329
|
Appearance |
White to light yellow crystalline powder.
|
Density |
1.4±0.1 g/cm3
|
Boiling Point |
415.7±40.0 °C at 760 mmHg
|
Melting Point |
250-254ºC
|
Flash Point |
205.2±27.3 °C
|
Vapour Pressure |
0.0±1.0 mmHg at 25°C
|
Index of Refraction |
1.519
|
LogP |
2.87
|
Hydrogen Bond Donor Count |
3
|
Hydrogen Bond Acceptor Count |
9
|
Rotatable Bond Count |
2
|
Heavy Atom Count |
27
|
Complexity |
483
|
Defined Atom Stereocenter Count |
2
|
SMILES |
O[C@H]([C@]1([H])NCCCC1)C2=CC(C(F)(F)F)=NC3=C(C(F)(F)F)C=CC=C32.[H]Cl
|
InChi Key |
WESWYMRNZNDGBX-YLCXCWDSSA-N
|
InChi Code |
InChI=1S/C17H16F6N2O.ClH/c18-16(19,20)11-5-3-4-9-10(15(26)12-6-1-2-7-24-12)8-13(17(21,22)23)25-14(9)11;/h3-5,8,12,15,24,26H,1-2,6-7H2;1H/t12-,15+;/m1./s1
|
Chemical Name |
(S)-[2,8-bis(trifluoromethyl)quinolin-4-yl]-[(2R)-piperidin-2-yl]methanol;hydrochloride
|
Synonyms |
Mefloquine Hydrochloride; Mephaquin; Mefloquine HCL; Loriam; Mefloquine (hydrochloride); WR-177,602; 51773-92-3; Loriam; WR 142490 hydrochloride; Ro 21-5998/001; NSC 157387; WR142,490; WR177,602; Ro215998001; Roche; Brand of Mefloquine Hydrochloride;
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment, avoid exposure to moisture. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
Ethanol :~83 mg/mL
H2O :~2.86 mg/mL (~6.90 mM) DMSO : ~50 mg/mL ( ~120.54 mM ) |
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: 2.5 mg/mL (6.03 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: 2.5 mg/mL (6.03 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: 2.5 mg/mL (6.03 mM) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication. Solubility in Formulation 4: 10% DMSO+40% PEG300+5% Tween-80+45% Saline: 2.5 mg/mL (6.03 mM) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.4110 mL | 12.0549 mL | 24.1097 mL | |
5 mM | 0.4822 mL | 2.4110 mL | 4.8219 mL | |
10 mM | 0.2411 mL | 1.2055 mL | 2.4110 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
NCT00746941 | Terminated | Drug: mefloquine | Progressive Multifocal Leukoencephalopathy |
Biogen | January 2009 | Phase 1 Phase 2 |
NCT01430351 | Active,not recruiting | Drug: Mefloquine Drug: Temozolomide |
Glioblastoma Gliosarcoma |
M.D. Anderson Cancer Center |
September 14, 2011 | Phase 1 |
NCT03923725 | Recruiting | Drug: Artesunate-mefloquine +placebo (AS-MQ+PBO) |
Plasmodium Falciparum Malaria (Uncomplicated) |
University of Oxford | September 1, 2020 | Phase 3 |
NCT05690841 | Not yet recruiting | Drug: Focal Mass Drug Administration (fMDA) |
Malaria, Vivax Malaria |
University of California, San Francisco |
June 1, 2024 | Phase 3 |