yingweiwo

Mavoglurant

Alias: AFQ 056 AFQ-056 AFQ056
Cat No.:V13786 Purity: ≥98%
Mavoglurant (AFQ-056; AFQ056) is a potent and non-competitive mGlu5 (metabotropic glutamate receptor 5) receptor antagonist (IC50=30 nM) with the potential to be used for treatment of fragile X syndrome.
Mavoglurant
Mavoglurant Chemical Structure CAS No.: 543906-09-8
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
Other Sizes

Other Forms of Mavoglurant:

  • Mavoglurant racemate
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Mavoglurant (AFQ-056; AFQ056) is a potent and non-competitive mGlu5 (metabotropic glutamate receptor 5) receptor antagonist (IC50=30 nM) with the potential to be used for treatment of fragile X syndrome. It showed efficacy in the treatment of L-dopa induced dyskinesias in Parkinson's disease and Fragile X mental retardation in proof of principle studies.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
Mavoglurant (1 nM-10 μM; 10 min) totally antagonizes hmGluR5-mediated responses with IC50 of 110 and 30 nM, respectively, in Ca2+- and PI turnover tests in L(tk-) cells stably expressing mGluR5a [1] . Mavoglurant (0.01 nM-10 μM) displaces the binding of the allosteric binding ligand [3H]-AAE327 in a concentration-dependent manner in rat meninges with an IC50 of 47 nM [1].
ln Vivo
Stress-induced hyperthermia (SIH) in mice is inhibited by mavoglurant (0.1–10 mg/kg; single oral dosage) in a dose-dependent manner [1]. Mavoglurant, at a single oral dose of 9.4 mg/kg, has a terminal half-life of 2.9 hours, a moderate oral bioavailability of 32%, and a Cmax of 950 pmol/mL and 3500 pmol/g in the brain and plasma, respectively [1]. Mavoglurant (3.1 mg/kg; intravenous injection; single dose) has a Tmax of less than 0.08 hours, a Cmax (plasma; brain) of 3330 pmol/mL, and a terminal half-life of 0.69 hours [1].
Animal Protocol
Animal/Disease Models: Male OF1/IC mice [1]
Doses: 0.1, 1, 10 mg/kg
Route of Administration: Single oral administration
Experimental Results: Reduce stress-induced hyperthermia. It is equivalent to the positive control chlordiazepoxide.

Animal/Disease Models: Male SD (SD (Sprague-Dawley)) rat (175-250 g) [1]
Doses: 3.1 mg/kg intravenously (iv) (iv)(iv); 9.4 mg/kg orally (pharmacokinetic/PK/PK analysis)
Route of Administration: Single iv or oral administration
Experimental Results: Po: F=32%; T1/2=2.9 hrs (hrs (hours)); Tmax≤0.25 hrs (hrs (hours)). IV: T1/2=0.69h; Cmax (plasma/brain)=3330 pmol·mL-1/8400 pmol·g-1; Tmax≤0.08 hour.
References

[1]. AFQ056/mavoglurant, a novel clinically effective mGluR5 antagonist: identification, SAR and pharmacological characterization. Bioorg Med Chem. 2014 Nov 1;22(21):5790-5803.

[2]. Epigenetic modification of the FMR1 gene in fragile X syndrome is associated with differential response to the mGluR5 antagonist AFQ056. Sci Transl Med. 2011 Jan 5;3(64):64ra1.

[3]. Mavoglurant as a treatment for Parkinson's disease. Expert Opin Investig Drugs. 2014 Aug;23(8):1165-79.

Additional Infomation
Mavoglurant has been used in trials studying the treatment of Patient Diagnosed With OCD and and Resistant to SSRI Treatment (Failed SSRI Over 12 Weeks at Appropriate Doses).
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C19H23NO3
Molecular Weight
313.397
Exact Mass
313.167
CAS #
543906-09-8
Related CAS #
Mavoglurant racemate;1636881-61-2
PubChem CID
9926832
Appearance
White to off-white solid powder
Density
1.2±0.1 g/cm3
Boiling Point
476.3±45.0 °C at 760 mmHg
Flash Point
241.8±28.7 °C
Vapour Pressure
0.0±1.3 mmHg at 25°C
Index of Refraction
1.602
LogP
3.51
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
3
Rotatable Bond Count
3
Heavy Atom Count
23
Complexity
519
Defined Atom Stereocenter Count
3
SMILES
CC1=CC(=CC=C1)C#C[C@@]2(CCC[C@@H]3[C@H]2CCN3C(=O)OC)O
InChi Key
ZFPZEYHRWGMJCV-ZHALLVOQSA-N
InChi Code
InChI=1S/C19H23NO3/c1-14-5-3-6-15(13-14)8-11-19(22)10-4-7-17-16(19)9-12-20(17)18(21)23-2/h3,5-6,13,16-17,22H,4,7,9-10,12H2,1-2H3/t16-,17-,19-/m1/s1
Chemical Name
methyl (3aR,4S,7aR)-4-hydroxy-4-[2-(3-methylphenyl)ethynyl]-3,3a,5,6,7,7a-hexahydro-2H-indole-1-carboxylate
Synonyms
AFQ 056 AFQ-056 AFQ056
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~120 mg/mL (~382.91 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 3 mg/mL (9.57 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 30.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 3 mg/mL (9.57 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 30.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 3 mg/mL (9.57 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 30.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.1908 mL 15.9541 mL 31.9081 mL
5 mM 0.6382 mL 3.1908 mL 6.3816 mL
10 mM 0.3191 mL 1.5954 mL 3.1908 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us