Levothyroxine (L-Thyroxine; T4)

Alias: L-Thyroxin, L Thyroxin, T4, Levothyroxine sodium, Levothyroxine sodium pentahydrate, Thyroxine
Cat No.:V5314 Purity: ≥98%
Levothyroxine (also known as L-Thyroxine; T4), a synthetic hormone derived from the thyroid gland, is used in the treatment of hypothyroidism (deficiency of the thyroid hormones).
Levothyroxine (L-Thyroxine; T4) Chemical Structure CAS No.: 51-48-9
Product category: THR
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
500mg
1g
2g
5g
10g
Other Sizes

Other Forms of Levothyroxine (L-Thyroxine; T4):

  • Thyroxine sulfate
  • L-Thyroxine sodium salt pentahydrate
  • Levothyroxine Sodium
  • L-Thyroxine-13C6-1 (L-Thyroxine-13C6; Levothyroxine-13C6-1; T4-13C6-1)
  • Biotin-(L-Thyroxine)
  • Biotin-hexanamide-(L-Thyroxine)
  • Thyroxine hydrochloride-13C6 (L-Thyroxine-13C6; Levothyroxine-13C6; T4-13C6)
  • L-Thyroxine-13C6 (L-Thyroxine-13C6)
  • L-Thyroxine-13C6,15N (L-Thyroxine-13C6)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Levothyroxine (also known as L-Thyroxine; T4), a synthetic hormone derived from the thyroid gland, is used in the treatment of hypothyroidism (deficiency of the thyroid hormones). DIO enzymes convert biologically active thyroid hormone (Triiodothyronine,T3) from L-Thyroxine (T4). Thyroxine is synthesized via the iodination of tyrosines (monoiodotyrosine) and the coupling of iodotyrosines (diiodotyrosine) in the thyroglobulin. Thyroxine is released from thyroglobulin by proteolysis and secreted into the blood. Thyroxine is peripherally deiodinated to form triiodothyronine which exerts a broad spectrum of stimulatory effects on cell metabolism.

Biological Activity I Assay Protocols (From Reference)
ln Vivo
Adrenaline (cortogen) is converted to active adrenal cortex by the enzyme deiodinase (DIO), and the levels of TSH, the catalytic adrenaline, are correlated with this response. The adrenal cortex gets activated by DIO1 and DIO2, and gets deactivated by DIO3. In the negative feedback regulation of pituitary TSH, the actions of DIO1 and DIO2 are decisive [1]. The modulation of ion channels, pumps, and regulatory contractions is well-established for thyroxine (T3) and L-thyroxine (T4). Furthermore, it has been demonstrated that androgens influence charging excitation, calcium replenishment, contractile mortality, and the regulation of drug control and feeding by L-thyroxine and triiodothyronine. Significantly reduced levels of triiodothyronine and L-thyroxine were detected in the cohort fed an iodine-free diet for 12 weeks, as compared to the control group fed a regular diet (p<0.001). A rise in L-thyroxine levels (p=0.02) was noted in the group receiving low-dose L-thyroxine treatment, although triiodothyronine levels (p=0.19) remained nearly uniform with headache severity. Increases in circulation concentrations of triiodothyronine and L-thyroxine were observed after treatment with high-dose L-thyroxine as compared to the hypothyroid group that did not receive treatment (p<0.001 and p=0.004, each). Comparing the levels of thyroid hormone to the control values, there was a significant rise (p=0.03).
References
[1]. Arici M, et al. Association between genetic polymorphism and levothyroxine bioavailability in hypothyroid patients. Endocr J. 2018 Mar 28;65(3):317-323.
[2]. Corriveau S, et al. Levothyroxine treatment generates an abnormal uterine contractility patterns in an in vitro animalmodel. J Clin Transl Endocrinol. 2015 Sep 9;2(4):144-149
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C15H11I4NO4
Molecular Weight
776.8700
CAS #
51-48-9
Related CAS #
Thyroxine sulfate;77074-49-8;L-Thyroxine sodium salt pentahydrate;6106-07-6;L-Thyroxine sodium;55-03-8;L-Thyroxine-13C6-1;1217780-14-7;Biotin-(L-Thyroxine);149734-00-9;Biotin-hexanamide-(L-Thyroxine);2278192-78-0;Thyroxine hydrochloride-13C6;1421769-38-1;L-Thyroxine-13C6;720710-30-5;L-Thyroxine-13C6,15N;1431868-11-9
SMILES
OC([C@@H](N)CC1=CC(I)=C(C(I)=C1)OC2=CC(I)=C(O)C(I)=C2)=O
InChi Key
XUIIKFGFIJCVMT-LBPRGKRZSA-N
InChi Code
InChI=1S/C15H11I4NO4/c16-8-4-7(5-9(17)13(8)21)24-14-10(18)1-6(2-11(14)19)3-12(20)15(22)23/h1-2,4-5,12,21H,3,20H2,(H,22,23)/t12-/m0/s1
Chemical Name
(S)-2-amino-3-(4-(4-hydroxy-3,5-diiodophenoxy)-3,5-diiodophenyl)propanoic acid
Synonyms
L-Thyroxin, L Thyroxin, T4, Levothyroxine sodium, Levothyroxine sodium pentahydrate, Thyroxine
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~250 mg/mL (~321.80 mM)
1M NaOH : 5 mg/mL (~6.44 mM)
H2O : < 0.1 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (2.68 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (2.68 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (2.68 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.2872 mL 6.4361 mL 12.8722 mL
5 mM 0.2574 mL 1.2872 mL 2.5744 mL
10 mM 0.1287 mL 0.6436 mL 1.2872 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us Back to top